View on GitHub

AutoFeat: Transitive Feature Discovery over Join Paths

Webpage containing information on the automatic feature discovery approach AutoFeat

Description

AutoFeat is an open-source automatic approach for feature discovery on tabular datasets.

Given a base table with a target variable and a repository of tabular datasets, AutoFeat helps to discover relevant features for augmentation among the tables from the data repository. The resulting augmented table will be a better training dataset for decision tree Machine Learning (ML) algorithms.

Authors

Andra Ionescu
TU Delft
Kiril Vasilev
TU Delft
Florena Buse
TU Delft
Rihan Hai
TU Delft
Asterios Katsifodimos
TU Delft

AutoFeat Methods

Datasets

Dataset Source # Rows Processing strategy # Joinable Tables # Total Features Links
jannis 57581 short_reverse_correlation 12 55 processed data
miniboone 73000 short_reverse_correlation 15 51 processed data
covertype 423682 short_reverse_correlation 12 21 processed data
eyemove 7609 short_reverse_correlation 6 24 processed data
credit 1001 short_reverse_correlation 5 21 processed data
bioresponse 3435 short_reverse_correlation 40 420 procssed data
steel 1943 short_reverse_correlation 15 34 processed data
school 1775 None 16 731 original data

Repositories

AutoFeat Papers

ICDE 2024