
AutoFeat: Transitive Feature Discovery
over Join Paths

Andra Ionescu, Kiril Vasilev, Florena Buse, Rihan Hai, Asterios Katsifodimos
Delft University of Technology

{a.ionescu-3, r.hai, a.katsifodimos}@tudelft.nl, {k.v.vasilev-1, i.buse}@student.tudelft.nl

Abstract—Can we automatically discover machine learning
(ML) features in a large data lake in order to increase the
accuracy of a given ML model? Existing solutions either focus on
simple star schemata, failing to discover features in more complex
real-world schemata or consider only PK-FK relationships in
clean, curated databases. However, real-world data lakes can
contain long join paths of uncurated joinability relationships
resulting from automated dataset discovery methods.

This paper proposes a novel ranking-based feature discovery
method called AutoFeat. Given a base table with a target
label, AutoFeat explores multi-hop, transitive join paths to
find relevant features in order to augment the base table with
additional features, ultimately leading to increased accuracy of
an ML model. AutoFeat is general: it evaluates the predictive
power of features without the need to train an ML model, ranking
join paths using the concepts of relevance and redundancy.
Our experiments on real-world open data show that AutoFeat
is efficient: it can find features of high predictive power on
data lakes with an increased number of dataset joinability
relationships 5x-44x faster than baseline approaches. In addition,
AutoFeat is effective, improving accuracy by 16% on average
compared to the baseline approaches, even in noisy, uncurated
data lakes.

I. INTRODUCTION

Machine learning is widely used in various domains, such as
retail, medical diagnosis, and transportation. An ML model’s
performance (e.g., accuracy) heavily depends on its training
data [1]. Although it is a common assumption that the input
data of a model is a single table, in practice, the situation can
be more complex. Features with high predictive power may
reside in different database tables or even in multiple files in
an open data repository/lake.

Recent works [2], [3] focus on augmenting a base table with
features, using join paths to drive their search. However, they
first search for data, then join, and then apply feature selection
to prune out noisy or irrelevant features based on ML model
performance. Given data lakes where primary-key/foreign-key
(PK-FK) constraints are missing, it is necessary to use dataset
discovery algorithms as a first step of data augmentation to
find relationships between tables. However, this process is
known to output spurious connections, where what might be
considered a join results in an irrelevant table with unrelated
data. This becomes an even bigger problem when two datasets
can be joined via multiple join columns. In this context, state-
of-the-art augmentation processes fail.

With this paper, we introduce transitive feature discovery,
which aims to discover and augment relevant features over join
paths without using ML models in the process. The main idea

0 100 200 300
Seconds

ARDA

MAB

AutoFeat

46.83

8.12

356.76
5.7x

44x

Avg feature discovery time

0.00 0.25 0.50 0.75
Accuracy

0.66

0.66

0.82

16%

16%

Avg accuracy

Figure 1: AutoFeat outperforms the state-of-the-art
data augmentation frameworks regarding feature discov-
ery/augmentation time, as it is faster than any approach, and
the resulting augmented table shows an increase in accuracy
when used for ML tasks.

behind our approach is to explore the space of joinable tables
and to prune out the low-quality join paths based on data qual-
ity measures, as well as relevance and redundancy metrics. As
shown in Figure 1, our approach (AutoFeat) outperforms the
competition both in effectiveness and efficiency. AutoFeat’s
effectiveness benefits come from its ability to explore join
paths beyond the star schemata supported by [2], managing to
find join paths that contain features of high predictive power.
In addition, by simply ranking join paths using relevance and
redundancy metrics, instead of training expensive ML models
during search [2], [3], AutoFeat is not only able to explore a
larger space of transitive joins paths, but also be 5x-44x more
efficient than the competition.

Goal. The goal of feature discovery is to enrich an original
base table with new features with high predictive power
for a target ML model on a classification task. AutoFeat
automates the process of identifying and joining relevant tables
from a dataset collection to a base table, thus creating an
augmented table. AutoFeat applies heuristic-based feature
selection techniques on the augmented table to prune out
any noisy or irrelevant features. AutoFeat performs these
tasks effectively and efficiently, reducing the need for manual
data engineering efforts and improving the performance (i.e.,
accuracy) of the subsequent ML processes.

Contributions. In short, the proposed method AutoFeat,
has the following desirable properties:

• General: AutoFeat can explore join paths beyond star
schemata in order to augment a given base table. In
addition, AutoFeat’s join path ranking mechanism does

not depend on training the target ML model.
• Efficient: instead of repeatedly training the underlying

model to assess the accuracy benefits of a given join
path, AutoFeat: i) prunes out non-promising join paths
using data quality metrics, and ii) proposes a ranking
function that chooses the top-k most promising join paths
according to information theoretical metrics that encode
feature relevance and redundancy. The result is 5x-44x
faster feature augmentation.

• Effective: while being faster, AutoFeat’s feature aug-
mentation strategy achieves on average 16% higher ac-
curacy compared to the state-of-the-art methods on real-
world, open data repositories.

Outline. We review the relevant literature in Section II, define
our problem and provide an overview of the concepts of
relevance and redundancy in Section III. In Section IV, we
delve into the concepts and techniques behind the dataset
relation graph. Next, we perform an empirical analysis of
the popular feature selection strategies in Section V, and in
Section VI, we describe the algorithm behind AutoFeat. We
evaluate our approach, summarise our findings in Section VII,
and conclude in Section VIII.
Reproducibility. Our code is open source at https://github.
com/delftdata/autofeat. The repository also contains the
sources of the datasets used in our evaluation.

II. RELATED WORK

Dataset Discovery. Dataset discovery helps users explore a
vast collection of heterogeneous datasets and find related tables
to perform a data-driven task [1], [4]. A large corpus of dataset
discovery works focus on finding unionable tables [5], joinable
tables [6]–[9], while some tackle both relatedness scenarios
[10], [11]. We consider feature discovery a more tailored
and specific dataset discovery process, where we are only
interested in the tables containing features fit to augment a
base table with more relevant information.
Dataset Augmentation. Dataset augmentation has been stud-
ied from two angles: when KFK constraints are known and
when these are discovered using dataset discovery approaches
[3], [12]–[15]. Dataset discovery approaches use joinability
graphs to model the datasets and the relations between them,
limiting the length of the join paths [2], [6]. These works
mostly focus on augmenting directly joinable tables and rely
on machine learning models for feature selection [2], [16]. In
short, as seen in Table I, ARDA supports single-hop paths
(star schemata), while MAB and AutoFeat support multi-
hop join paths. Both ARDA and MAB require an expensive
model execution step to evaluate the quality of a join path,
while AutoFeat ranks paths according to cheaper metrics
(Section V). Finally, for each pair of tables, instead of sup-
porting a single join possibility, AutoFeat supports multiple
ones (joinability multigraph).
Transitive Joins. Transitive joins have been proven to be
effective for augmentation in the context of notebooks [11],
[17], or as an augmentation strategy for tuples or missing

Table I: Comparison of state-of-the-art methods.

Join path
Length

Path / Feature
Selection

Joinability
Graph

ARDA Single-hop Model-execution based Simple Graph
MAB Multi-hop Model-execution based Simple Graph

AutoFeat Multi-hop Ranking-based Multigraph

values [14]. AutoFeat uses transitive joins to navigate the
join space and explore candidates for feature augmentation
using multi-hop join paths.
Feature Selection. Feature selection methods are categorised
based on selection strategies into filter, wrapper, and embedded
types [18], [19]. Filter methods are independent of the ML
model, wrappers assess feature quality based on learner per-
formance, and embedded methods integrate feature selection
into the training process. While traditional feature selection
assumes training data is stored in a single table, our feature
discovery approach addresses challenges arising from data
spread across multiple tables.

III. TRANSITIVE FEATURE DISCOVERY

In this section, we provide an overview of the foundational
concepts that underpin this paper, such as relevance and
redundancy in the context of machine learning; then, we define
the problem of transitive feature discovery and provide an
overview of our approach.

A. Preliminaries

With transitive feature discovery, we aim to discriminate
between relevant and redundant features and reduce useless
information [20]. Given a dataset Ti which comprises a
collection of features X1, X2, ..., Xn, and a feature containing
the labels Y , and given Si = {X1, ..., Xi−i, Xi+1, ..., Xm} a
collection of features without Xi, we define the concepts of
relevance and redundancy as follows.
Relevance. The relevance of a feature has multiple definitions
based on the objective, and it has been shown that a general
definition of relevance is not universally applicable [21].
Therefore, in feature selection, we must distinguish between
strong relevance and weak relevance [19], [21], [22].

Strong relevance of a feature Xi means that removing the
feature results in the degradation of the optimal feature subset.
Contrary to strong relevance, weak relevance of a feature
Xi means that the feature is not always necessary (i.e., not
relevant), but the performance of a learner on a subset of
features Si is worse than on a subset of features Si ∪ {Xi}.
Finally, the relevant features influence the output, and their
role is unique (e.g., no redundancy), while irrelevant features
have no influence on the output [20], [22].
Redundancy. Feature redundancy is tightly coupled to feature
dependency or feature correlation, meaning that perfectly
correlated features are redundant to each other because they
do not introduce any new information [19]. The redundant fea-
tures are those which can take the role of another feature [20].
The most straightforward intuition is that a redundant feature
is a duplicate of a relevant feature. It is worth mentioning that
feature redundancy is not absolute, as it is conditioned on a

https://github.com/delftdata/autofeat
https://github.com/delftdata/autofeat

Personal_information

Social_security_number

Nationality

Date of birth

Place of birth

Zipcode

Property value

Property_ID

Zipcode

Street_name

Neighbourhood

Housing_value

Credit_profile

Credit_ID

SSN

Income

Credit_score

Loan history

Loan_ID

Credit_ID

Loan_type

Loan_value

Applicants

Applicant_ID

Name

Social_security_number

Age

Loan approval (yes/no)

Step 0:
Rsel = {X1, X2, X3, X4}

T0

X1

X2

X3

X4

Y

Step 1:
Join: T0 ⟕ T1 on T0.X1= T1.X8
Prune: null_value_ratio < 𝛕 = 0.65

Step 2:
Join: T0 ⟕ T1 on T0.X3 = T1.X6
Prune: null_value_ratio > 𝛕 = 0.65 (no pruning)
Relevance: {X7, X8}
Redundancy: {X7, X8} (no feature was redundant)

T1

X5

X6

X7

X8

T2

X9

X10

X11

X12

X13

T4

X18

X19

X20

X21

X22

T3

X14

X15

X16

X17

Output (best path)

Step n:
Rsel = {X1, X2, X3, X4, X7, X8,

X16, X17, X212, X22, X25}

T0

T1

T3

T5

T2

T4

X3
X6

X5
X15

X14
X24

X3
X9

X13
X19

Join tree

Applicants_augmented

Applicant_ID

Name

Social_security_number

Age

Income

Credit_score

Loan_type

Loan_value

Neighbourhood

Housing_value

Loan approval (yes/no)

Figure 2: Running example: the base table Applicants contains the label Loan approval. The green-coloured features represent
the features with high predictive power, while the yellow-coloured feature represents the join column used to reach the transitive
table Property value, which contains relevant features for our classification task. The green arrows represent the paths which
contain the relevant features. The best path is abstracted in the right-hand side of the figure as a join tree.

feature subset. Changing the feature subset leads to changing
the decision of whether a feature is redundant or not. Finally,
feature redundancy aims to identify the redundant features and
remove them [19].

Summary & Goal. The goal of this work is to maximise
relevance and minimise redundancy to find the features which
are highly correlated with the label (i.e., relevant) and are not
yet represented by any other feature from the selected features
subset (i.e., non-redundant).

B. Problem Definition

We introduce transitive feature discovery, a process at the
intersection of dataset discovery, dataset augmentation and fea-
ture selection. We leverage the exploration step and joinability
scores from dataset discovery to augment a given table. The
(partially) augmented result undergoes a feature selection step,
where we select only the features that increase the information
value (i.e., relevant and non-redundant). Formally, we define
transitive feature discovery as follows:

Definition III.1 (Transitive feature discovery). Given a base
table Ti with a label column Y and a collection of datasets D
with or without Key-Foreign Key (KFK) relations, transitive
feature discovery extends the base table with more relevant
features Xi with the aim of solving a task M .

Input. We take as an input (i) a table T0 comprising of n
features {X1, X2, ..., Xn}, and a feature Y with the labels,
which we further name the base table, and (ii) a collection
of datasets T = ⟨T1, . . . , Tn⟩.
Setting. The base table is located in a data lake, surrounded by
a collection of datasets, where we distinguish two scenarios:
(i) the relationships between the base table and the other
datasets are undiscovered and unknown, or (ii) the base table
has known KFK relationships with other datasets.

Output. Our approach outputs a ranked list of top-k join
paths. Each join path contains the datasets for augmentation

with their respective join keys and a list of selected features,
representing the optimal subset of features in the join path,
leading to increased performance of an ML classification task.

Example. Take as an example the collection of datasets from
Figure 2. Transitive feature discovery aims to enrich the base
table Applicants with new features that have high predictive
power for the target task of predicting bank loan eligibil-
ity (Loan approval). The candidates for augmentation are
the following datasets: Personal information, Credit profile,
Property value, and Loan history. This example contains
relationships discovered by dataset discovery algorithms,
which can be spurious (e.g., Applicants.Applicants ID →
Credit profile.Credit score). The output shows the result
of the best join path, which is depicted as a join tree with its
corresponding join keys. It also shows the selected subset of
features and the final augmented table.

C. Approach Overview

Our approach consists of an offline component: the joinabil-
ity graph construction. This phase transforms the base table
and the dataset collection into a graph structure, a process we
detail in Section IV.

The online component is the entire augmentation pipeline:
we traverse the graph, begin the discovery process, and the
feature selection phase. During graph traversal, outlined in
Section IV-A, we execute the following processes: (i) the
identification of joinable tables, (ii) and pruning paths, (iii)
the identification of relevant features within a join path, and
finally (iv) the decision on which features should be pruned
based on redundancy. We further elaborate on our design
choices concerning the join type in Section IV-B, and the
strategies for table pruning in Section IV-C. Our decision-
making process for feature selection follows an empirical
approach, presented in detail in Section V.
AutoFeat traverses the joinability graph in search of

relevant features, then ranks the join paths and produces a

list of the top-k paths along with their corresponding features.
The mechanisms and design decisions integral to the ranking
process are provided in Section VI. Finally, the top-k join
paths are used to train k ML models, and the best join path
(i.e., which produces the most accurate result) is returned.

IV. DATASET RELATION GRAPH

This section delves into the core concepts and techniques
behind the offline component. We make the general assump-
tion that we have a collection of various input datasets coming
from relational databases or data lakes. In a relational database,
the metadata such as the schemata and PK-FK constraints
are often defined. In data lakes, we assume the relationships
between the datasets can be detected using dataset discovery
tools [6]–[11], [13], [23], [24].

We create the joinability graph Dataset Relation Graph
(DRG). DRG is a weighted graph where the nodes represent
the datasets, while the edges represent the relations between
these datasets. We use DRG (i) to capture the relationships
between datasets, (ii) to traverse the graph following transitive
joins, and (iii) to be able to enumerate multi-hop join paths,
which we assume they contain valuable and relevant informa-
tion for the base table. Before we explain how the DRG is
constructed, we introduce a few concepts which will be used
throughout the rest of the paper.

Definition IV.1 (Joinability and join column). Given two
datasets Ti and Tj , and their attributes Xi

i and Xi
j , where the

superscript denotes the attribute i, while the subscript denotes
the originating dataset, Ti is joinable with Tj if (1) there
is a primary-key/foreign-key relationship between Ti and Tj ,
i.e., Ti.X

i
i → Tj .X

i
j where Xi

i is the foreign key and Xi
j is

the corresponding primary key, or (2) Xi
i and Xi

j are related
attributes (i.e., their intersection is non-empty). We refer to Xi

i

and Xi
j as join columns.

Definition IV.2 (Join graph and path). Consider a set of
datasets T = ⟨T1, . . . , Tn⟩. Its join graph GT = (V,E) is
an undirected graph with nodes V and edges E. Each dataset
Ti ∈ T is represented as a node vi ∈ V . If two datasets Ti and
Tj are joinable, there is an edge eij ∈ E between the nodes
vi and vj . In a join graph, a join path is a finite sequence of
edges that connect a sequence of distinct nodes.

Definition IV.3 (Dataset Relation Graph). Consider a set of
datasets T = ⟨T1, . . . , Tn⟩. Its dataset relation graph is an
undirected multi-graph GT = (V,E), where each node vi ∈ V
represents a dataset Ti ∈ T, and the set of edges between two
nodes vi and vj is a multiset Eij . The multiset Eij contains
all the edges between vi and vj , representing multiple join
opportunities given different join columns.

The DRG construction follows the next steps. First, we
iterate through all the datasets and create the respective nodes
in the graph. Second, if the datasets contain information
about the integrity constraints, we ingest these constraints as
edges with weight = 1. Finally, when the relations between
tables are unknown, we employ a dataset discovery method:

our current prototype uses COMA [25] for schema match-
ing, according to Valentine [24]. The new relationships are
modelled as edges with weight = similarity score, where
the similarity score is the score returned by COMA. DRG
construction is independent of the dataset discovery algorithm;
thus any algorithm which outputs a similarity score can be
used to model the relationships across datasets.
Join Path Enumeration. We model the DRG as a multi-graph
to capture the set of possible join columns between two tables.
Given the dataset relation graph GT and the base table T0, it
is straightforward to enumerate all possible paths starting from
the node representing T0. A path in DRG is a directed join
path of minimum length = 1.

Definition IV.4 (Join path search space). The join path search
space Ji is all the acyclic paths in GT that start from Ti and
have length ≥ 1.

In our approach, we navigate the join path space following
transitive joins, thus creating longer join paths. We consider a
different join path every edge in the multi-graph and every n−
hop traversal, which is a concatenation of paths. In Figure 2,
the following is a join path with length = 1

Applicants.Applicant ID → Credit profile.Credit score,

while the following is a different join path of length = 2

Applicants.Applicant ID → Credit profile.Credit score

→ Loan history.Credit ID

The DRG plays a crucial role in our methodology, serving
as the backbone for all subsequent steps, including graph
traversal, join operations, and path pruning, which we will
elaborate on next.

A. Graph Traversal

Given a base table T0, and its corresponding node v0 in
DRG, we set the stage for graph traversal. Among various
graph traversal techniques, Depth First Search (DFS) and
Breadth First Search (BFS) become particularly pertinent to
our context [26], [27]. These methods require only the source
node to traverse the graph, an approach that aligns with our
setting: the feature discovery process starts with the base table.
Exploring a join graph using either BFS or DFS can lead to a
greedy approach, as both algorithms aim to find all join paths.
However, AutoFeat uses BFS to traverse the join graph for
feature augmentation for the following reasons.

BFS explores the join graph one level at a time, allowing us
to evaluate the data quality after each level of join operations.
This early determination of data quality enables us to optimise
the data augmentation process and potentially avoid wasting
computational resources on irrelevant join paths. While DFS
might find a feasible join path quickly, it may not necessarily
consider the most relevant datasets early in the process. This
can lead to a decrease in data quality as it explores longer, less
relevant paths before discovering the more informative ones.
Moreover, errors from one join can propagate deeper into the
join path, affecting the quality of the results even more. BFS

makes errors easier to manage and contain, as the exploration
is performed level by level.

B. Join

Continuing this process, AutoFeat only considers left
joins: we perform a left join between the base table T0 and any
other tables Tj under the assumption that ∀Tj ∈ T, Y /∈ Tj ,
i.e., any other table from the dataset does not contain a feature
column with the class labels. For transitive joins, we treat the
intermediate join result as a base table and perform a left join
with the following table along the path, etc.

The left join is chosen primarily to maintain the number
of tuples and, more critically, the number and distribution
of classes in the label Y , which aligns with prior data
augmentation approaches [2]. Using a different type of join
could either remove or duplicate rows, both of which skew
the class distribution and introduce class imbalance [28]. If
not handled properly, such imbalance could alter the ML task
or degrade performance [29]–[31].

Join Cardinality. To ensure the base table size remains con-
stant (i.e., neither shrinks due to row removal nor expands due
to row duplication) even when a left join is used, we transform
one-to-many and many-to-many joins, thereby preventing data
duplication and inconsistencies in labels. We group by the join
column and randomly select a row [2]. Given that the DRG is
a multi-graph, we apply this strategy for every possible join
column due to its direct impact on the subsequent joins.

C. Pruning Paths

To further refine our approach and improve efficiency, it is
necessary to consider the complexities involved with the join
path search space. Working directly with the raw output of a
dataset discovery method results in a significantly expanded
search space, demanding the application of robust pruning
strategies to manage this increased complexity effectively.

Similarity Score-Based Pruning. There may be instances
where multiple possible join columns exist between two nodes
as a result of a dataset discovery algorithm. In such cases, we
explore each potential join using every respective join column.
Preliminary experiments, however, suggest that a significant
portion of these join results contain null values across their
entire right-hand side. This result is far from ideal as an input
for any ML algorithm. Thus, we implement our first pruning
strategy at the join column level. Using the similarity score, we
can prune weaker join columns. Given a base table, a joinable
table, and a set of join columns, AutoFeat selects the join
column with the highest similarity score. When multiple join
columns share the same top score, each join from Ti to Tj

using the join column Xi
j is an individual join path.

Data Quality-Based Pruning. The resulting augmented table
may still suffer from poor quality, even when using the join
column with the highest similarity score. A critical dimension
of data quality is completeness [32], which can be gauged
by the amount of null values present in a table. Several
strategies can enhance table completeness: deletion, which

is unsuitable in our context as it involves removing tuples;
and imputation, which involves replacing null values with
mean value, median value, most recurrent value, or a default
value [29]. However, these artificially imputed values may
skew the data distribution and introduce bias [29]. In light
of the drawbacks associated with imputation or deletion, our
goal is to augment the base table with datasets that result
in a table with the highest possible completeness. As such,
with our second pruning strategy based on completeness, we
measure the null value ratio in the resulting join and prune
the joins where this ratio falls below a predefined threshold τ .
This threshold is incorporated into our approach as a hyper-
parameter, and we demonstrate the effects of tuning it in our
experiments (Section VII).

V. FEATURE SELECTION STRATEGIES

In this section, we introduce streaming feature selection,
explore a variety of relevance and redundancy metrics, and
assess their performance. We use this empirical evaluation
to drive our design decisions towards the best-performing
methods and ensure our effectiveness and efficiency.

A. Streaming Feature Selection

Streaming feature selection assumes a constant number of
rows. In contrast, the features arrive in a streaming fashion, one
at a time, or in groups, with the goal to determine the subset
of relevant features at a given time [18], [33]–[36]. Each new
feature batch is derived from a join operation in relational data.
Moreover, transitive join paths involve an implicit dependency.
Each transitive join relies on the intermediate join and the
features representing the join columns. Ensuring the persis-
tence of these join column features is essential, and the feature
selection algorithms must not eliminate them. Therefore, we
must refrain from pruning intermediate joins, even if they
contain irrelevant and redundant features, as they establish
the pathway towards multi-hop join paths. AutoFeat builds
upon the pipeline of streaming feature selection using the high-
performance strategies for relevance and redundancy.

B. Empirical Evaluation Setting

Before we delve deeper into the empirical analysis of
the methods for relevance and redundancy, we describe the
experimental setup.
Datasets. For a comprehensive evaluation, we choose six bi-
nary classification datasets varying in domains (e.g., medicine,
web data, pattern recognition), the ratio of rows to columns,
and types of features (e.g., discrete, continuous, nominal, and
ordinal). These datasets are sourced from widely-employed
ML repositories: OpenML, Kaggle, and UC Irvine1.
ML Models. We use LightGBM for our analysis based on its
high-dimensional data capacity and resistance to overfitting
[37]. This is deployed using AutoGluon [38], an AutoML
framework designed for tabular data, which automatically
handles data encoding and hyper-parameter tuning.

1www.openml.org, www.kaggle.com, https://archive.ics.uci.edu/

www.openml.org
www.kaggle.com
https://archive.ics.uci.edu/

Metrics. We measure accuracy for effectiveness, and the
feature selection time and model training time for efficiency.

Methodology. Missing values are handled by imputation with
the most common value corresponding to the feature. We split
the dataset into an 80%-20% train-test set. We use the training
set to retain top−κ best-performing features from the total set
of features [39], where the choice of values for κ varies based
on the dimensionality of the dataset. After feature selection,
we train the ML model and evaluate it on the test set.

C. Relevance Metrics

In feature selection, relevance is measured using heuristics.
One of the most popular heuristics is correlation, which is
based on the hypothesis that good features correlate with the
label. We analyse two information-theoretic based methods:
information gain, symmetrical uncertainty [33], two widely
used correlation coefficients: Pearson, Spearman [40], and
Relief, primarily used to remove irrelevant features [41].

Information Gain (IG). Information gain helps select features
highly correlated with the label. The method assumes that if
a feature has a strong correlation with the label, that feature
will positively impact the performance of an ML model [33].
Information gain is symmetric (e.g., I(X;Y) = I(Y ;X)), and
it equals zero if two variables X and Y are independent [18].

Symmetrical Uncertainty (SU). Symmetrical uncertainty is
a correlation metric which measures the linear or non-linear
association between two features [42], [43]. SU is based on
information gain, and it is able to compensate for the bias
towards features with multiple values, one of the shortcomings
of IG. SU returns a normalised score in the [0, 1] interval. A
score close to zero indicates that the features are independent
and, therefore, not relevant for the classification, while a score
close to one indicates dependency and, thus, relevancy.

Pearson. Pearson correlation is widely used to assess if two
variables are linearly related, independent of any non-linearity
that exists in the distribution of the variables. To compute the
Pearson correlation between two variables Xi and Y , we must
know the covariance and variance of the variables [39].

Spearman. Spearman correlation is a non-parametric measure
of rank correlation, which is the statistical dependence between
the rankings of two variables. While Pearson’s correlation
assesses linear relationships, Spearman’s correlation assesses
monotonic relationships. The distinction between Pearson and
Spearman is that Spearman involves transforming the sample
values to ranks in the range [1, N]. If no repeated data values
exist, a perfect correlation of +1 or −1 occurs. The higher the
value, the higher the correlation [40].

Relief. Relief feature scoring is based on identifying feature
value differences between nearest neighbour instance pairs.
In other words, the method focuses on separating the data
instances from different classes [44].

Choosing a Relevance Metric. Figure 3a shows that Pearson
and Spearman are approximately 3x faster than the SU and
IG from information theory due to the calculation simplicity

91.0 91.2 91.4
Accuracy (%)

10

15

To
ta

l t
im

e
(s

ec
.)

Pearson
Spearman

Relief

SU

IG

Relevance methods

(a) Relevance methods.

88 90
Accuracy (%)

5000

7500

10000

To
ta

l t
im

e
(s

ec
.)

MIFS MRMR

CIFE

JMI

CMIM

Redundancy methods

(b) Redundancy methods.

Figure 3: Comparison of a) relevance methods, and b) redun-
dancy methods based on aggregated accuracy and runtime.

of the first two methods. They also outperform SU and IG
in accuracy by around 0.5. While Relief shows comparable
efficiency to Pearson and Spearman, its effectiveness is notably
lower. Spearman consistently performs best for all datasets,
considering both effectiveness and efficiency. Consequently,
Spearman is our recommended choice for handling high-
dimensional datasets due to its efficiency and effectiveness
across varying dataset characteristics.

D. Redundancy Metrics

In feature selection, redundancy is used to assess how much
adding a new feature can benefit the performance of a model.
Redundant features may have a high degree of overlap in
the information they convey: adding a feature Xi, similar
to feature Xj , is redundant, as it does not add any new
information. We will assess information-theoretical methods
based on Shannon’s information terms [45].

Definition V.1. (Shannon’s information terms) Given S a set
of currently selected features, Y the feature with the class
labels and Xj ∈ S a feature from the current set S, the
unified conditional likelihood maximisation feature selection
framework is defined as a linear combination of Shannon’s
information terms [18]:

J(Xk) = I(Xk;Y)− β
∑

Xj∈S

I(Xj ;Xk) + λ
∑

Xj∈S

I(Xj ;Xk|Y), (1)

where I(Xk;Y) represents the information gain, while
I(Xj ;Xk|Y) represents the conditional information gain.

We will use five methods to measure redundancy, all based
on Equation (1).
Mutual Information Feature Selection (MIFS). MIFS helps
select the features which are highly correlated with the label
and un-correlated with each other [46]. As the name implies,
the method uses mutual information to compute the scores and
penalises the features correlated with already selected features.
The method considers both feature relevancy and redundancy,
and it sets the λ = 0 in Equation (1) [18]. In our analysis, we
relied on β = 0.5.
Minimum Redundancy Maximum Relevance (MRMR).
MRMR assumes that with more selected features, the effect
of redundancy is gradually reduced. The method sets λ = 0
and β = 1

|S| in Equation (1), where |S| is the size of the set
of selected features [18].

Conditional Infomax Feature Extraction (CIFE). CIFE is
a method that computes the feature-label and feature-feature
correlations and the redundancy between the un-selected and
already selected features. The method sets β = 1 and λ = 1
in Equation (1) [18].
Joint Mutual Information (JMI). JMI aims to increase the
complementarity between un-selected and selected features
and sets λ = 1

|S| and β = 1
|S| in Equation (1), where |S|

is the size of the set of selected features [18].
Conditional Mutual Information Maximization (CMIM).
CMIM aims to select features with a strong predictive power
while reducing the redundancy between the new and selected
features. The method is a special case of Equation (1) as
follows [18]:

J(Xk) = I(Xk;Y)− max
Xj∈S

[I(Xj ;Xk)− I(Xj ;Xk|Y)] (2)

Choosing a Redundancy Metric. In Figure 3b, we compare
the five information theory methods for feature selection, and
we find that MIFS and MRMR are nearly 3x faster than
CIFE, JMI, and CMIM. This is due to their computation-
saving characteristic of not needing to estimate conditional
information gain. However, considering accuracy, CIFE, JMI,
and CMIM outperform as they effectively capture inter-column
relationships and select less redundant features. Specifically,
JMI achieves the highest accuracy but at the cost of the longest
runtime, whereas MIFS offers 4x faster runtime but is 6%
less accurate. Considering both runtime and accuracy, MRMR
emerges as a balanced choice, offering considerably faster
runtime while still achieving high model accuracy.

Based on these findings, we devise our algorithm for transi-
tive feature discovery. Spearman rank correlation is employed
to measure the relevance, while Maximum Relevance Mini-
mum Redundancy (MRMR) is utilised to quantify redundancy.

VI. AUTOFEAT’S: RANKING-BASED FEATURE DISCOVERY

We introduce our ranking algorithm, built upon the foun-
dations of a streaming feature selection pipeline [33], and
adapted to suit our specific needs.
Streaming Feature Selection Pipeline. We follow the typical
streaming feature selection pipeline, starting with a feature
subset’s relevance analysis. Subsequently, the resulting subset
of relevant features undergoes the redundancy analysis. The
final subset contains relevant and non-redundant features,
while all others are discarded [18], [33]. As such, we populate
the set of selected features with those from the base table T0.
Every join candidate Ti that was not pruned proceeds through
the relevance analysis, followed by the redundancy analysis
of the subset of relevant features. Algorithm 1 presents our
strategy for transitive feature discovery over join paths. The
process initiates with a queue containing the base table T0 and
its feature set, which forms the selected feature set Rsel.
DRG Traversal. We start the DRG traversal (Lines 6-9) using
the strategy described in Section IV-A. Recall that we use
dataset discovery algorithms in a data lake context to discover
the relationships between datasets, leading to multiple join

Algorithm 1: Feature Discovery
Input : queue Q containing the base table T0, Rsel selected

features from T0, τ null value ratio threshold, κ maximum
number of features to select from a table

Output: dictionary of paths with scores rank

1 Function autofeat(Q, P=None) is
// Previous queue initialisation

2 P = Q
3 if Q is empty then
4 return ranking
5 end
6 while Q do
7 T0 = pop(Q)
8 neighbours = get neighbours(T0)
9 foreach node Tn ∈ neighbours do

10 join keys = get join keys(T0, Tn)
11 C = empty queue
12 while P do
13 foreach join key jk ∈ join keys do
14 R = join(T0, Tn, jk)

// If the join is not possible,
prune

15 D = get data quality(R)
// If the data quality <

threshold τ, prune
16 Rrel, scorerel =

measure relevance(R, κ)
// If Rrel is empty, all

features are irrelevant,
continue

17 Rred, scorered =
measure redundancy(R[Rrel], Rsel)

// If Rred is empty, all
features are redundant,
continue

18 Rsel = Rsel ∪Rred

19 score =
compute score(scorerel, scorered)

// Save ranking
20 ranking = (score,R)

// Update current queue, C,
with the join, R

21 update(C,R)
22 end
23 update(P,C)
24 end
25 end
26 end
27 return autofeat(neighbours, P)
28 end

possibilities between two datasets. We treat each of these
join possibilities as a valid join in our approach, allowing
our pruning strategy and the feature selection algorithm to
determine the significance of the join result (Step 1 and
Step 2 in Figure 2). Therefore, in a data lake setting, the
join keys set results in multiple join possibilities (Line 10).
We maintain an additional queue P to preserve all the paths
containing relevant information, given a specific join column
jk. When the dataset exclusively contains KFK connections,
the join keys set will always yield a single join column.

Join & Prune. Once the join keys are known, we compute
the join (Line 14), as detailed in Section IV-B. If the join
is unfeasible due to mismatched join columns (i.e., in a data
lake scenario), the join path is pruned according to our first
pruning strategy described in Section IV-C. The subsequent

Algorithm 2: Ranking score
Input : scorerel the scores from the relevance analysis, scorered

the scores from the redundancy analysis
Output: ranking score one score number

1 Function compute score(scorerel, scorered) is
2 Nrel = length(scorerel)
3 Nred = length(scorered)
4 sumrel = sum(scorerel)/Nrel

5 sumred = sum(scorered)/Nred

6 ranking score =
(Nred ∗ sumrel +Nrel ∗ sumred)/(Nrel ∗Nred)

7 end

step involves pruning based on data quality (Line 15). More
precisely, if the proportion of null values in the join column
falls below the predefined hyper-parameter threshold, τ , the
join path is pruned.

Feature Selection. All the remaining join paths undergo the
feature selection process. We introduce a heuristic approach,
named select κ best, where we sort the features based on
the correlation score, then select the top-κ performers [39].
Consequently, we carry out the relevance analysis (Line 16)
using the high-performing method from Section V-C and retain
only the top-κ features. If the resulting subset of features is
empty, all features are irrelevant. However, we do not prune
the join path, as it is an intermediary step towards multi-hop
join paths. The final step of the feature selection pipeline
is the redundancy analysis (Line 17). Based on the finding
from Section V-D, we apply MRMR to the subset of features
resulting from the relevance analysis. If the result is an empty
set, all the features are redundant. Otherwise, we update the
list of selected features Rsel with the new subset (Line 18).

Ranking. Upon completion of the feature selection process,
we use the scores from the relevance and redundancy analysis
to compute a rank for the corresponding join path (Line 19),
as explained in Algorithm 2. We compute the sum of the
relevance analysis scores, weighted by the cardinality of the
selected subset (Line 4). We repeat the process for the redun-
dancy analysis (Line 5). The final ranking score is the sum
of sumrel and sumred, weighted by their common divisor.
Finally, we store the join path and its corresponding ranking
score in an ordered list and update the queues. AutoFeat
is a recursive algorithm. Once all neighbours are visited, the
algorithm starts with the neighbours as base nodes until the
entire graph is explored (i.e., all nodes are visited).

From Ranked Paths to Training ML Models. We use the
top-k join paths from the list of ranked join paths (Line 20)
to systematically train ML models and evaluate the paths.
To improve the efficiency of our approach, we use stratified
sampling to sample the base table at the beginning of the
process. This sampling strategy, however, only impacts the
feature selection process and does not limit the scope of data
considered during model training. After training, we select the
best join path based on the resulting ML model accuracy.

Table II: Overview of datasets used in evaluation.

Dataset # Rows # Joinable Total Best accuracy
tables ↓ # features (OpenML.org)

credit 1001 5 21 0.99
eyemove 7609 6 24 0.894
covertype 423682 12 21 0.99

jannis 57581 12 55 0.875
miniboone 73000 15 51 0.9465

steel 1943 15 34 1.0
school 1775 16 731 0.831

bioresponse 3435 40 420 0.885

VII. EVALUATION

In this section, we provide quantifiable evidence showing
that AutoFeat outperforms existing works by being 5x-44x
faster on average. Moreover, AutoFeat exhibits an average
of 16% increase in the predictive power of the augmented
features compared to the competition. With our experiments,
we aim to show the following:

• Effectiveness - AutoFeat is able to augment a base table
with relevant information, which used to train an ML
algorithm, leads to an increase in accuracy.

• Efficiency - Relative to SOTA approaches, AutoFeat
exhibits superior efficiency. This is primarily due to its
non-reliance on ML models for augmentation.

A. Experimental Setup

Datasets. We evaluate AutoFeat on real-world, open
datasets collected from OpenML.org, and summarised in Ta-
ble II. The school dataset originates from the evaluation of
ARDA [2]. The datasets are used for binary classification, and
we present their best accuracy based on the corresponding
tasks found in OpenML.org. For school dataset, we report
the highest accuracy from the source paper ARDA. We use
a collection of eight datasets varying in size and number of
joinable tables, which we split into multiple tables using two
different settings.
Benchmark Setting. We design a technique to divide a
dataset into multiple small tables with known KFK constraints.
We extend the setting from ARDA, where they use star
schemata with known KFK connections. We call this approach
the benchmark setting. Here, the DRG contains only KFK
relations, which resembles a snowflake schemata. With this
setting, we aim to reproduce the results of the baselines [2],
[3], and to show that AutoFeat can explore longer join paths
in search for relevant features.
Data Lake Setting. With the data lake setting, we aim
to simulate a data lake scenario where the connections be-
tween datasets are unknown. Using the same tables from the
benchmark setting, we remove the edges representing KFK
relationships, and we apply dataset discovery algorithms to
find the relations. We use COMA [25] as implemented in
Valentine [24], with a default schema matching strategy and
a similarity threshold of 0.55 to encourage spurious, but not
irrelevant, connections. The DRG is now a dense multi-graph.
This scenario aims to showcase the predictive power of our

OpenML.org
OpenML.org

approach in a data lake setting and the fact that we can
discriminate between join columns.

Machine Learning Models. To validate that our augmenta-
tion approach can add relevant information, we use machine
learning tasks. We use four decision tree algorithms (e.g.,
LightGBM, Extreme Randomised Trees, Random Forest and
XGBoost), all available in AutoGluon [38], the AutoML
framework for tabular data, which automatically handles data
encoding and hyper-parameter tuning. We choose to use deci-
sion trees, as they are one of the most popular ML models used
in practice; they are explainable and can outperform neural
networks [47], [48] in tabular training data.

Metrics. We evaluate the performance of our approach by
measuring: (i) effectiveness using accuracy, and (ii) efficiency
by measuring the feature selection time - the total time it takes
to assess the fitness of features for augmentation.

B. Baselines

AutoFeat. AutoFeat respresents our feature discovery
approach. We use τ = 0.65 as the null value ratio and κ = 15
as the maximum selected features from a table.

BASE. The BASE approach represents the base table, which
is assumed to be performing poorly on any ML model. This
represents the table we want to augment with more predictive
and relevant features.

ARDA. ARDA is one of the SOTA approaches and is the
feature augmentation system which uses a random-injection
approach to select the features for augmentation [2]. Since
the source code was unavailable, we implemented the feature
selection part of the system following the algorithms and
details provided in the original paper [2].

MAB. The second SOTA technique we consider is the Multi-
Armed Bandit (MAB) method [3]. The study presents two
distinct methods for feature augmentation: one leveraging
the multi-armed bandit reinforcement learning approach, and
another utilising deep Q networks, which is a neural network
approach. Our results are consistent with the original study that
reported comparable effectiveness (i.e., 0.02 - 0.04 difference
in AUC), but major differences in efficiency between the two
methods: our experiments showed that the deep Q network
method required a prohibitive amount of computational time
(i.e., extending to days for a single experiment) which ex-
ceeded the limits of our available resources. In contrast, the
MAB approach enabled us to conduct the experiments within
a reasonable time frame (i.e., hours).

JoinAll. The JoinAll baseline is the approach where all the
tables which connect with the base table are joined in all
possible ways. Given a perfect scenario where: (i) the join
cardinality is 1:1, and (ii) the joins are on KFK, JoinAll results
in a single path. However, when the connections are not KFK,
regardless of the type of join, the number of possible paths
increases tremendously, as the order in which the tables are
joined affects the resulting augmented table. We denote D, the
maximum depth of the join tree, N(d) the number of nodes at

depth d ∈ D, and k(v) the number of un-visited neighbours
of node v. The total number of possible JoinAll paths P is the
product of all choices at all levels:

P =

D∏
d=0

∏
v∈N(d)

k(v)!, (3)

JoinAll+F. The JoinAll+F baseline is the JoinAll approach,
where we apply filter feature selection on the resulting dataset
before training the ML model.

C. Results

The experimental results are split based on the schemata
configuration: the benchmark setting and the data lake setting.

1) Benchmark setting: Recall that the benchmark setting
represents the DRG with known KFK relationships without
spurious connections. No results are shown for the baselines
JoinAll and JoinAll+F in Figure 4 on the school dataset, due
to the increased computation time. For school dataset, which
follows a star schema, and the join cardinality is not 1:1, the
number of possible join paths for JoinAll and JoinAll+F is
P = 15! (Equation (3)). As a result, those baselines did not
finish within the given time constraint.
Effectiveness. AutoFeat shows an average accuracy in-
crease of 16% across all datasets and algorithms. The effec-
tiveness of AutoFeat aligns with our expectations due to
its ability to navigate through longer join paths, leveraging
transitive joins to identify more relevant features. This is in
contrast to ARDA, which is limited to star schemata. Given
its capability to handle transitive joins, we expected that MAB
would be more effective than the results show. Compared to
the JoinAll and JoinAll+F baselines, AutoFeat results in
similar accuracy, which shows that it finds the right features
to improve the performance of a given base table.
Efficiency. The efficiency of AutoFeat is noteworthy. On
average, AutoFeat operates 4.5x faster than ARDA and
12x faster than MAB. Referencing the credit dataset from
Figure 4, AutoFeat is 4x faster than ARDA and 7x faster
than MAB, even when the increase in accuracy is marginal.
Using heuristics to identify relevant features contributes to
the superior efficiency of AutoFeat, a stark contrast to
ARDA and MAB, which incorporate the ML model into
their feature discovery process. Given that the JoinAll baseline
does not perform feature selection, we can only compare the
total runtime, where AutoFeat is on average 3x faster than
JoinAll. In contrast, the feature selection time of the JoinAll+F
baseline costs less than one second, since it performs feature
selection once for a single wide table. However, on average,
its total runtime is, 3x slower than AutoFeat.
Path Analysis. Figure 4 illustrates the number of datasets each
approach uses to find the most relevant features. ARDA is
limited to star schemata and joins all the datasets directly
connected to the base table. Thus, the number of datasets
used to find the most related features is at most the max-
imum number of directly connected neighbours. Although
MAB can handle transitive joins, it does not explore the
schemata in depth, a limitation which results from the fact that

0
10

0

10
1

10
2

10
3

S
ec

on
ds

X

Average total time and feature selection time per dataset

bioresponse

covertype
credit

eyemove
jannis

miniboone
school

steel
0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

3 3 2
3 3

3 16 3
3 3 2 3 3

3
2 3

39
11

4 5 11 14 14

X

1 8
2 4 1 2

1
14

Average accuracy per dataset

Approach
BASE ARDA MAB JoinAll JoinAll+F AutoFeat

Figure 4: Benchmark setting - Top: Average runtime in pastel
colours. The contrasting colours show the portion of feature
selection time out of the total runtime. Bottom: Accuracy per
dataset, averaged over all tested tree-based ML algorithms.
Numbers on bars represent # of joined tables. Horizontal lines
represent the best accuracy.

MAB requires the same join column name (i.e., PK-FK with
the same names). AutoFeat requires fewer datasets while
achieving higher accuracy, except for covertype, eyemove, and
steel. Here, AutoFeat joins more tables than ARDA and
MAB because AutoFeat explores the schemata in depth. We
observed that the most relevant features reside via transitive
joins; thus, most tables joined by AutoFeat are only required
to navigate the join path search space.

Evaluation on Non Tree-Based Models. Figure 5 shows the
effectiveness of AutoFeat on non-tree based ML models:
K-Nearest Neighbours (KNN) and Linear Regression with L1
regularisation (LR). For LR, AutoFeat achieves top perfor-
mance together with JoinAll and JoinAll+F baselines across
most datasets, with ARDA surpassing on the school dataset.
Dataset characteristics influence the effectiveness of KNN: it
underperforms on smaller datasets due to insufficient neigh-
bours for reliable decision-making (e.g., credit, eyemove, steel,
school). Conversely, on larger datasets with fewer features
(e.g., covertype, jannis, miniboone), or on high-dimensional
datasets (e.g., bioresponse), KNN converges effectively with
the JoinAll and JoinAll+F baselines.

2) Data lake setting: Recall that we apply an automated
dataset discovery method in a data lake setting to find the re-
lationships between tables. The once snowflake-like schemata
transform into a densely connected graph in this context.
Figure 6 and Figure 7 do not show results for the baselines
JoinAll and JoinAll+F as the number of possible JoinAll paths
in this scenario is extremely large (Equation (3)).

Effectiveness. As depicted in Figure 6, AutoFeat consis-
tently demonstrates equal or superior effectiveness to other
approaches. On average, AutoFeat outperforms ARDA by
12% and MAB by 2%. In a data lake setting with numerous

0.0

0.5

1.0

A
cc

ur
ac

y

X

3 3 2 3 3 3
16 3

3 3 2
3 3 3 2 339

11
4

5 11 14 14

X
1 8

2
4 1 2 1 14

KNN - Accuracy per dataset

bioresponse

covertype
credit

eyemove
jannis

miniboone
school

steel
0.0

0.5

1.0

A
cc

ur
ac

y

X

3 3
2

3 3
3 16 3

3 3 2
3 3

3
2 3

39 11 4
5 11 14 14

X

1 8 2 4
1 2

1
14

Linear - Accuracy per dataset

Approach
BASE ARDA MAB JoinAll JoinAll+F AutoFeat

Figure 5: Benchmark setting: accuracy per dataset, for KNN
and Linear Regression. Numbers on bars represent # of joined
tables. Horizontal lines represent the best accuracy.

spurious connections, AutoFeat adeptly prunes tables that
introduce noise, indicating the critical role of join ordering for
data augmentation.
Efficiency. The AutoFeat approach maintains impressive
efficiency, even within a data lake setting. On average,
AutoFeat operates 10x faster than MAB and 3x faster
than ARDA while delivering comparable or superior accuracy
(Figure 6). In this context, we explore various join column
pairs to identify the path enriched with the most relevant
features, subsequently increasing the time invested in fea-
ture discovery. However, using heuristics, instead of relying
on machine learning models to predict feature importance,
effectively counters the overall time spent, sustaining our
approach’s efficiency.
Path Analysis. Figure 6 illustrates expected behaviours. With
the snowflake schemata disrupted, where dataset discovery
algorithms yield many spurious connections, ARDA indiscrim-
inately joins all the datasets neighbouring the base table. MAB
suffers from the same limitation as in the benchmark setting,
where it restricts its joins to tables sharing the same join
column name, thereby inhibiting the exploration of transitive
connections. AutoFeat can prune out irrelevant tables and
explores the join path search space in depth (e.g., jannis and
steel datasets). Once again, we noticed that the high number
of joined datasets results from the fact that the most relevant
features reside in a multi-hop join path.
Evaluation on Non Tree-Based Models. Figure 7 shows the
performance of AutoFeat on non tree based ML models.
In the data lake scenario, the baselines may introduce irrel-
evant features; thus KNN does not achieve optimal results.
KNN suffers challenges due to possible noise when irrelevant
tables are joined, leading to worse distance measurements.
Conversely, LR shows AutoFeat outperforming baselines in
the majority of cases (i.e., five out of eight datasets), with
ARDA maintaining a consistent lead on the school dataset.

0
10

0

10
1

10
2

10
3

S
ec

on
ds

Average total time and feature selection time per dataset

bioresponse

covertype
credit

eyemove
jannis

miniboone
school

steel
0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

3 3 2
3 3

3 16 3
3 3 2 3 3

3
2 31 8 2 4 1

2 1
14

Average accuracy per dataset

Approach
BASE ARDA MAB AutoFeat

Figure 6: Data lake setting - Top: Average runtime in pastel
colours. The contrasting colours show the portion of feature
selection time out of the total runtime. Bottom: Accuracy per
dataset, averaged over all tested tree-based ML algorithms.
Numbers on bars represent # of joined tables. Horizontal lines
represent the best accuracy.

3) Summary: On a snowflake schema, AutoFeat can
explore the join path space in depth, searching for relevant
features. On a densely connected multi-graph, AutoFeat can
explore different join column possibilities and follow the path
with the highest data quality in search of the most relevant
features for augmentation. On both configurations, AutoFeat
is more efficient for feature discovery than the baselines.
AutoFeat is an approach best suited to tree-based ML

models that can mitigate the consequences of high dimension-
ality. Kernel-based ML models and linear models suffer more
from the ”curse of dimensionality”, where data points become
sparse and the distance between points loses meaning, which
increases the difficulty of finding meaningful patterns in the
data, resulting in degraded performance.

The results show that AutoFeat is a more efficient and
effective method for feature discovery over long join paths
on tree-based ML models.

D. Parameter Sensitivity Analysis

AutoFeat relies on two hyper-parameters: the null value
ratio (τ) and the maximum number of features to select (κ).
This set of experiments aims to demonstrate the sensitivity of
our method to variations in τ and κ and their influence on
both effectiveness and efficiency.

Sensitivity to κ. Figure 8a illustrates the change in accuracy
and feature selection time with different values of κ, denoting
the maximum number of features to be selected. As κ varies
from 2 to 6, there is a notable 4% increase in accuracy at
the cost of an additional 2.5 seconds in feature selection time.
However, when κ ranges from 6 to 10, the increase in accuracy
is less than 1%, despite the same increment of 2.5 seconds
in time. A similar trend is observed when κ varies within

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

3 3 2 3 3 3
16 3

3 3
2

3 3 3 2
3

1 8 2 4 1 2 1 14

KNN - Accuracy per dataset

bioresponse

covertype
credit

eyemove
jannis

miniboone
school

steel
0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

3 3
2

3 3
3 16

3
3 3 2

3 3
3 2 31 8

2 4 1
2 1 14

Linear - Accuracy per dataset

Approach
BASE ARDA MAB AutoFeat

Figure 7: Data lake setting: accuracy per dataset, for KNN
and Linear Regression. Numbers on bars represent # of joined
tables. Horizontal lines represent the best accuracy.

the interval [15, 20]. We recommend selecting a value for κ
within the range [10, 15], as this provides a high accuracy level
with a tolerable trade-off of a few seconds. Any κ > 15 does
not significantly improve accuracy nor efficiency but could
potentially risk overfitting the ML model.

Sensitivity to τ . Our pruning strategy is contingent on data
quality, such that a table is pruned if the ratio of null values
to the total number of values exceeds a threshold τ . Figure 8b
displays the average accuracy and feature selection time across
datasets for different values of the hyper-parameter τ within
the range of [0.05, 1.0], incremented by steps of 0.05. Most
datasets appear to be relatively insensitive to the threshold,
barring two exceptions: covertype (shown in orange) and
school (illustrated in pink). In Figure 8c and Figure 8d, we
provide a closer look at these two datasets.

When τ = 1, it leaves no room for null values, implying that
the tables perfectly match on the join keys, thus leading to peak
accuracy. However, the school dataset depicted in Figure 8d
yields no output when τ = 1, indicating no tables with perfect
matches on join keys. Hence, although τ = 1 can result in
optimal accuracy in certain instances, it is overly restrictive
and fails to generalise across other tables.

The data indicates that for τ within the range [0.05, 0.6], the
results tend to cluster around similar accuracy values or feature
selection times. This suggests that not many tables are pruned
during this interval, and imputation methods have little effect
on accuracy. However, for τ > 0.6, we observe a decrease in
accuracy (up to 4% less) and time. Reducing feature selection
time implies that more tables are pruned at this stage. The
decrease in accuracy signifies potential bias introduced by the
imputation strategies. We recommend τ = 0.65 as a balance
between accuracy and feature selection time.

0.68 0.70 0.72
Accuracy

25.0

27.5

30.0

32.5

S
ec

on
ds

2 3 4
5

6

10

15
20

Average feature selection time
 and accuracy for top-k features

(a) Results averaged over
datasets and ML models.

0.6 0.7 0.8 0.9
Accuracy

0

50

100

S
ec

on
ds

Average feature selection time
and accuracy for tau threshold

(b) Results averaged over
datasets and ML models.

0.62 0.64 0.66 0.68
Accuracy

106

108

S
ec

on
ds 0.65

0.7

0.75

0.85
0.9

0.95
1.0

Null value ratio tuning on
 covertype dataset

(c) covertype - accuracy and
feature selection time

averaged over ML models.

0.78 0.79
Accuracy

10

20

S
ec

on
ds

0.6

0.65
0.75

0.85

0.90.95

Null value ratio tuning on
 school dataset

(d) school - accuracy and
feature selection time

averaged over ML models.

Figure 8: Parameter Sensitivity Analysis.

The hyper-parameter κ directly influences our model’s effec-
tiveness, with higher κ leading to improved results. Mean-
while, the hyper-parameter τ greatly impacts the model’s
efficiency, highlighting the role of our pruning strategy.

E. Ablation Study

AutoFeat uses two core methods: Spearman to measure
relevance, and MRMR redundancy. To show that AutoFeat
is indeed more efficient and more effective thanks to these
methods, we perform an ablation study, where we use different
configurations of AutoFeat. One by one, we replace either
MRMR with JMI, or Speaman with Pearson, or both. Finally,
we turn off the computation of either relevance or redundancy.

The results of the ablation study are presented in Figure 9.
The variants of AutoFeat which use JMI are at least two
times slower than AutoFeat, consistent with Figure 3. How-
ever, both Pearson-JMI and Spearman-JMI are less accurate
than AutoFeat on five out of eight datasets and marginally
more accurate on school and jannis.

Compared with AutoFeat, the Spearman-only version
results in either degradation in time or accuracy and achieves
similar results only on school and steel datasets.

Pearson-MRMR and MRMR versions exhibit similar be-
haviour. They are either less accurate (i.e., they fail to find
all the relevant features) or slower (i.e., they retain too many
features). However, on three of the datasets, they result in
similar performance with AutoFeat. One reason for this
behaviour is the fairly similar schemata of these datasets,
which contain the same amount of joinable tables. However,
on school dataset, MRMR is the slowest but also the most
accurate. Here, the schemata are star-shaped, which results in
fewer opportunities for deep pruning. MRMR fails to discard
features, exhibiting a behaviour similar to JoinAll baseline.

10 20

0.801

0.802

jannis

175 200

0.94

0.96

covertype

1.00 1.25

0.725

0.750
credit

2 4

0.625

0.650

A
cc

ur
ac

y

eyemove

0 500

0.775

0.780

0.785
bioresponse

20 30

0.935

0.940
miniboone

25 50
Total time (seconds)

0.725
0.750
0.775

school

2.5 5.0

0.9

1.0
steel

Spearman-MRMR
 (default)
Pearson-JMI
Pearson-MRMR
Spearman-JMI
MRMR
Spearman

Figure 9: Accuracy and total time on the ablation study with
different configurations of AutoFeat.

The proposed version of AutoFeat (i.e., Spearman-MRMR)
is the most efficient version with minimal accuracy loss.

VIII. CONCLUSION

We have introduced AutoFeat, a novel approach for
transitive feature discovery. AutoFeat addresses a critical
gap in current data science practices by navigating the complex
join space, effectively augmenting a base table with rele-
vant features across various datasets. It exploits a relevance-
agnostic algorithm for scoring features, not relying on specific
ML models, making the approach broadly applicable and
versatile. The results demonstrated that AutoFeat achieves
high effectiveness using a fraction of the computation time
compared to SOTA approaches.
Future Work. Several directions remain open for future
exploration. We aim to integrate more complex feature se-
lection strategies that could improve the feature’s relevance
and overall performance. We plan to explore dynamic hyper-
parameter tuning, allowing the algorithm to adapt to different
data landscapes and tasks. As datasets grow in complexity
and volume, more efficient methods of navigating join paths
and reducing the complexity of the problem space will be
investigated. We are particularly interested in how graph-based
models and representations could be used to achieve this.
Other improvement possibilities might arise after evaluating
our approach on real data lake scenarios within organisations,
where we envision that more aggressive pruning strategies
might be required.

ACKNOWLEDGMENTS

We want to extend our gratitude to Alexandru Balan for
his invaluable support and feedback, and for his outstanding
engineering skills, which have played a pivotal role in the
success of this project. This work was partially funded by the
the European Union’s H2020 project OpertusMundi (870228),
and by European Union Horizon Programme ExtremeXP
(101093164). This publication is part of the project Under-
standing Implicit Dataset Relationships for Machine Learning
(VI.Veni.222.439) of the research programme NWO Veni
which is partly financed by NWO.

REFERENCES

[1] G. Fan, J. Wang, Y. Li, and R. J. Miller, “Table discovery in data
lakes: State-of-the-art and future directions,” in Companion of the 2023
International Conference on Management of Data, 2023, pp. 69–75.

[2] N. Chepurko, R. Marcus, E. Zgraggen, R. C. Fernandez, T. Kraska, and
D. Karger, “Arda: automatic relational data augmentation for machine
learning,” PVLDB, pp. 1373–1387, 2020.

[3] J. Liu, C. Chai, Y. Luo, Y. Lou, J. Feng, and N. Tang, “Feature
augmentation with reinforcement learning.”

[4] R. Hai, C. Koutras, C. Quix, and M. Jarke, “Data lakes: A survey of
functions and systems,” IEEE Transactions on Knowledge and Data
Engineering, 2023.

[5] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller, “Table union search on
open data.” Association for Computing Machinery, 2018, pp. 813–825.

[6] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and
M. Stonebraker, “Aurum: A data discovery system,” in ICDE, 2018,
pp. 1001–1012.

[7] R. Castro Fernandez, J. Min, D. Nava, and S. Madden, “Lazo: A
cardinality-based method for coupled estimation of jaccard similarity
and containment,” ICDE, vol. 2019-April, pp. 1190–1201, 2019.

[8] E. Zhu, D. Deng, F. Nargesian, and R. J. Miller, “Josie: Overlap set
similarity search for finding joinable tables in data lakes,” in SIGMOD,
2019, pp. 847–864.

[9] Y. Dong, K. Takeoka, C. Xiao, and M. Oyamada, “Efficient joinable
table discovery in data lakes: A high-dimensional similarity-based
approach,” in ICDE. IEEE, 2021, pp. 456–467.

[10] A. Bogatu, A. A. Fernandes, N. W. Paton, and N. Konstantinou, “Dataset
discovery in data lakes,” in ICDE. IEEE, 2020, pp. 709–720.

[11] Y. Zhang and Z. Ives, “Finding related tables in data lakes for interactive
data science,” in SIGMOD, 2020, pp. 1951–1966.

[12] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu, “To join or not to join?
thinking twice about joins before feature selection,” in SIGMOD, 2016,
pp. 19–34.

[13] S. Castelo, R. Rampin, A. S. Santos, A. Bessa, F. Chirigati, and J. Freire,
“Auctus: a dataset search engine for data discovery and augmentation,”
2021.

[14] M. Yakout, K. Ganjam, K. Chakrabarti, and S. Chaudhuri, “Infogather:
entity augmentation and attribute discovery by holistic matching with
web tables,” in SIGMOD, 2012, pp. 97–108.

[15] R. Hai, C. Koutras, A. Ionescu, Z. Li, W. Sun, J. Van Schijndel, Y. Kang,
and A. Katsifodimos, “Amalur: Data integration meets machine learn-
ing,” in 2023 IEEE 39th International Conference on Data Engineering
(ICDE). IEEE, 2023, pp. 3729–3739.

[16] S. Galhotra, Y. Gong, and R. C. Fernandez, “Metam: Goal-oriented data
discovery,” arXiv preprint arXiv:2304.09068, 2023.

[17] Y. Zhang and Z. G. Ives, “Juneau: data lake management for jupyter,”
Proc. VLDB Endow., vol. 12, no. 12, 2019.

[18] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and
H. Liu, “Feature selection: A data perspective,” ACM computing surveys
(CSUR), vol. 50, no. 6, pp. 1–45, 2017.

[19] S. H. Huang, “Supervised feature selection: A tutorial.” Artif. Intell.
Res., vol. 4, no. 2, pp. 22–37, 2015.

[20] L. C. Molina, L. Belanche, and À. Nebot, “Feature selection algorithms:
A survey and experimental evaluation,” in ICDM. IEEE, 2002, pp. 306–
313.

[21] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[22] L. Yu and H. Liu, “Efficient feature selection via analysis of relevance
and redundancy,” The Journal of Machine Learning Research, vol. 5,
pp. 1205–1224, 2004.

[23] S. Bharadwaj, P. Gupta, R. Bhagwan, and S. Guha, “Discovering Related
Data at Scale,” PVLDB, vol. 14, no. 8, pp. 1392–1400, 2021.

[24] C. Koutras, G. Siachamis, A. Ionescu, K. Psarakis, J. Brons, M. Fragk-
oulis, C. Lofi, A. Bonifati, and A. Katsifodimos, “Valentine: Evaluating
matching techniques for dataset discovery,” in ICDE. IEEE, 2021, pp.
468–479.

[25] H.-H. Do and E. Rahm, “Coma—a system for flexible combination of
schema matching approaches,” in VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases. Elsevier, 2002,
pp. 610–621.

[26] A. Bundy and L. Wallen, “Breadth-first search,” Catalogue of artificial
intelligence tools, pp. 13–13, 1984.

[27] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[28] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and
G. Bing, “Learning from class-imbalanced data: Review of methods and
applications,” Expert systems with applications, vol. 73, pp. 220–239,
2017.

[29] V. Gudivada, A. Apon, and J. Ding, “Data quality considerations for big
data and machine learning: Going beyond data cleaning and transfor-
mations,” International Journal on Advances in Software, vol. 10, no. 1,
pp. 1–20, 2017.

[30] C. Cortes, L. D. Jackel, and W.-P. Chiang, “Limits on learning machine
accuracy imposed by data quality,” Advances in Neural Information
Processing Systems, vol. 7, 1994.

[31] P. Li, X. Rao, J. Blase, Y. Zhang, X. Chu, and C. Zhang, “Cleanml:
A study for evaluating the impact of data cleaning on ml classification
tasks,” in 2021 IEEE 37th International Conference on Data Engineer-
ing (ICDE). IEEE, 2021, pp. 13–24.

[32] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and
A. Grafberger, “Automating large-scale data quality verification,” Pro-
ceedings of the VLDB Endowment, vol. 11, no. 12, pp. 1781–1794, 2018.

[33] N. AlNuaimi, M. M. Masud, M. A. Serhani, and N. Zaki, “Streaming
feature selection algorithms for big data: A survey,” Applied Computing
and Informatics, vol. 18, no. 1/2, pp. 113–135, 2020.

[34] X. Hu, P. Zhou, P. Li, J. Wang, and X. Wu, “A survey on online feature
selection with streaming features,” Frontiers of Computer Science,
vol. 12, pp. 479–493, 2018.

[35] K. Yu, X. Wu, W. Ding, and J. Pei, “Scalable and accurate online feature
selection for big data,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 11, no. 2, pp. 1–39, 2016.

[36] H. Li, X. Wu, Z. Li, and W. Ding, “Group feature selection with
streaming features,” in 2013 IEEE 13th International Conference on
Data Mining. IEEE, 2013, pp. 1109–1114.

[37] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “LightGBM: A highly efficient gradient boosting decision tree,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[38] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and
A. Smola, “Autogluon-tabular: Robust and accurate automl for structured
data,” arXiv preprint arXiv:2003.06505, 2020.

[39] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of machine learning research, vol. 3, no. Mar, pp.
1157–1182, 2003.

[40] J. de Winter, S. Gosling, and J. Potter, “Comparing the pearson and
spearman correlation coefficients across distributions and sample sizes:
A tutorial using simulations and empirical data,” Psychological Methods,
vol. 21, pp. 273–290, 2016.

[41] R. Duangsoithong and T. Windeatt, “Relevance and redundancy analysis
for ensemble classifiers,” in Machine Learning and Data Mining in Pat-
tern Recognition: 6th International Conference, MLDM 2009, Leipzig,
Germany, July 23-25, 2009. Proceedings 6. Springer, 2009, pp. 206–
220.

[42] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, and M. DATA, “Practical
machine learning tools and techniques,” in Data Mining, vol. 2, no. 4,
2005.

[43] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in ICML, 2003, pp. 856–863.

[44] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore,
“Relief-based feature selection: Introduction and review,” Journal of
biomedical informatics, vol. 85, pp. 189–203, 2018.

[45] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[46] R. Battiti, “Using mutual information for selecting features in supervised
neural net learning,” IEEE Transactions on neural networks, vol. 5, no. 4,
pp. 537–550, 1994.

[47] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?” in Thirty-
sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022.

[48] Z. Qin, L. Yan, H. Zhuang, Y. Tay, R. K. Pasumarthi, X. Wang,
M. Bendersky, and M. Najork, “Are neural rankers still outperformed
by gradient boosted decision trees?” 2021.

	Introduction
	Related Work
	Transitive feature discovery
	Preliminaries
	Problem Definition
	Approach Overview

	Dataset relation graph
	Graph Traversal
	Join
	Pruning Paths

	Feature Selection Strategies
	Streaming Feature Selection
	Empirical Evaluation Setting
	Relevance Metrics
	Redundancy Metrics

	AutoFeat's: Ranking-based Feature Discovery
	Evaluation
	Experimental Setup
	Baselines
	Results
	Benchmark setting
	Data lake setting
	Summary

	Parameter Sensitivity Analysis
	Ablation Study

	Conclusion
	References

