
Open Problems & Future Work



2

Towards “ideal” runtimes for trans. Cloud apps

Failure handling

Transaction support 

Microservices Ideal Cloud RuntimeFaaS (Lambda + Steps + DB)Monolith

App Logic

State management

App Logic App Logic App Logic

Orchestration

Messaging

Failure handling

State management

Scaling Scaling Scaling

Sad Developer

Orchestration

Messaging

Failure handling

State management

Orchestration

Messaging

Failure handling

State management

Transactions

Transactions Transactions Transactions

Happy Developer



3

Call to action

DB community

Programming Model

Scaling

Orchestration

Failure handling

State management

Transactions

Systems community

PL Community

Messaging

Interesting research lies in the combination of layers.



4

State, messaging & app logic cannot be treated separately.

“Theorem” 1: Unless a runtime fully controls state & messaging, exactly-once is impossible. 
Main reason: state mutations are causally dependent on messages.

“Corollary” 1: Unless runtime guarantees exactly-once messaging, failures will leak to app logic.

“Corollary” 2: Unless runtime offers transaction primitives, transactions will “leak” to app logic.



5

Programming Model

Scaling

Orchestration

Failure handling

State management

Transactions

Messaging

Apache Flink

Styx/Snapper

Debate: A) systems implement the whole stack or… B) combine well-designed systems?

e.g., analytics community builds “composable” systems while Cloud providers build verticals.

Lambda

Dapr/Temporal.io/ReState

Apache Kafka

Dataflow

Dataflow/Actor Systems

Runtimes & Orchestrators

FaaS

Messaging



6

How would an ideal runtime look like?

Id
eal C

lo
ud

 R
untim

e

App Logic

Scaling

Orchestration

Messaging

Failure handling

State management

Transactions

BUT: do we really need a single runtime? Or multiple systems that agree on abstractions. What abstractions?



7

Before we finish...

Developers’ perspective 
cannot be jeopardized

Any system advancement must be accompanied by 
appropriate software development support

Deployment, upgrading, and 
deprecation of components

Data and message schemas changes
Debugging
Replayability (aka time travel)
Observability
Application logs



Open Problems: for any single color, there are multiple PhDs

Data models

Benchmarks

Fault Tolerance

 

APIs & Programming Models
 

Geo-distribution & 
Replication

8

Debugging Tools

W
ide O

pen Space

Autoscaling State Migration Disaggregated Architectures

Debate: Don’t databases do all these?



9

Who are we?

Rodrigo 
Laigner

(University of
 Copenhagen)

George 
Christodoulou

(TU Delft)

Kyriakos 
Psarakis
(TU Delft)

Asterios 
Katsifodimos

(TU Delft)

Yongluan 
Zhou

(University of 
Copenhagen)

Slides, and pointers:
https://delftdata.github.io/tutorial-sigmod25/

https://delftdata.github.io/tutorial-sigmod25/
https://delftdata.github.io/tutorial-sigmod25/
https://delftdata.github.io/tutorial-sigmod25/

