
Open Problems & Future Work
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Call to action
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Interesting research lies in the combination of layers.
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State, messaging & app logic cannot be treated separately.

“Theorem” 1: Unless a runtime fully controls state & messaging, exactly-once is impossible. 
Main reason: state mutations are causally dependent on messages.

“Corollary” 1: Unless runtime guarantees exactly-once messaging, failures will leak to app logic.

“Corollary” 2: Unless runtime offers transaction primitives, transactions will “leak” to app logic.
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Debate: A) systems implement the whole stack or… B) combine well-designed systems?

e.g., analytics community builds “composable” systems while Cloud providers build verticals.
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How would an ideal runtime look like?
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BUT: do we really need a single runtime? Or multiple systems that agree on abstractions. What abstractions?
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Before we finish...

Developers’ perspective 
cannot be jeopardized

Any system advancement must be accompanied by 
appropriate software development support

Deployment, upgrading, and 
deprecation of components

Data and message schemas changes
Debugging
Replayability (aka time travel)
Observability
Application logs



Open Problems: for any single color, there are multiple PhDs

Data models

Benchmarks

Fault Tolerance

 

APIs & Programming Models
 

Geo-distribution & 
Replication

8

Debugging Tools
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Autoscaling State Migration Disaggregated Architectures

Debate: Don’t databases do all these?
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Who are we?

Rodrigo 
Laigner

(University of
 Copenhagen)

George 
Christodoulou

(TU Delft)

Kyriakos 
Psarakis
(TU Delft)

Asterios 
Katsifodimos

(TU Delft)

Yongluan 
Zhou

(University of 
Copenhagen)

Slides, and pointers:
https://delftdata.github.io/tutorial-sigmod25/

https://delftdata.github.io/tutorial-sigmod25/
https://delftdata.github.io/tutorial-sigmod25/
https://delftdata.github.io/tutorial-sigmod25/

