Benchmarks

® 5
.2 TUDelft

COPENHAGEN

| Why benchmarking?

Stress aspects of a system given a workload definition

Derive insights about [the (in)ability of] a system to
Manage locks (e.g., in a contention workload)

Partition and distribute data (e.g., with skewed record
accesses)

(Over)Usage of computational resources

Stalls (coming from instruction misses)

Provide a clear comparison point for different systems

I Why benchmarking transactional cloud applications?

Cloud programming systems exhibit large discrepancies
Variety of programming models and guarantees

Challenges on deciding for an ideal model

Entities, objects, workflows, durable, stateful, stateless,
reliable, virtual, actors, services, and so on...

I Why benchmarking transactional cloud applications?

Data partitioning, access, and storage
Concurrent application logic execution
Fault handling

Upgrade support

Debugging

Guarantees during crashes and network partitions

| State-of-the-art microservice benchmarks

5. Tail at Scale Implications DeathStar benchmark

Y= f A suite of microservice
4. Application/Programming
Framework Implications

applications

Effects of microservices on
hardware and software in
the system stacks

3. Cluster Management Implications

Focus on hardware, network,
and operating systems

Y. Gan et al. “,An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud and Edge Systems", ASPLOS 2019

| State-of-the-art microservice benchmarks

TrainTicket benchmark

A complex and heterogenous
microservice archietcture

Focus on software
engineering concerns

Replicating industrial faults in
microservices

Support investigation of fault
analysis and debugging

Xiang Zhou et al. “,Fault Analysis and Debugging of Microservice Systems: Industrial Survey, Benchmark System, and Empirical Study.” IEEE Transactions on Software Engineering. 2018

What benchmarks are being used?

Cloudburst (VLDB 2020)

Composition of functions
machine learning prediction
Retwis, a simple twitter
clone

Boki (SOSP 2021)
DeathStar benchmark
» Movie reviews
> Travel reservations
Retwis

Snapper (SIGMOD 2022)
Smallbank Benchmark
TPC-C

Netherite (VLDB 2022)

“hello world,” 5-task workflow
Transfer across bank accounts
MapReduce-style WordCount
CollisionSearch

I What benchmarks are being used?

SmSa (SoCC 2024)
TPC-C
YCSB
Online Marketplace
(more to come)

Histrio (DEBS 2025)
banking application
hotel reservation application

Styx (SIGMOD 2025)
TPC-C
YCSB
DeathStar (microservice
benchmark)

Portals (2023)
Savina (actor benchmark)
NexMark (stream
processing)

| Are we faithfully benchmarking transactional cloud applications?

Benchmarking is conducted
in an ad-hoc fashion

Disparate benchmarks used

Missing key aspects of data
management in the cloud /
Disparate design and system
models /

Challenging direct
comparison across systems Sorce:OC

| Refreshing real-world data management challenges

Netflix (Sarma, 2020): "Rethinking service interactions as streams of event
exchanges—as opposed to a sequence of synchronous requests”

Wix (Silnitsky, 2022): "[..] developers noticed that the inventory service database
does not reflect the actual inventory levels of some products. Was the
OrderCreated or PaymentCompleted event produced correctly?”

Nubank (Ferreira and Wible, 2017): "you have late-arriving events [...] we need
to time travel back, re-play the events and figuring out the balance that does not
invalidate the invariants we have, that is fixing invariants”

B2W (Mayerhofer, 2018): “[...] in @ microservice architecture there are multiple
services, each one of them handling a single concern. [...] Often a microservice
requires data from another microservice to serve its request.”

Crowdtap (Viennot et. al, 2015): “the same data, needed by different
(micro)services, must be replicated across their respective DBs.”

10

Towards a benchmark for transactional cloud applications

Requirement

Criteria

Functional Decomposition

Isolation of Resources

Event Processing

Event Processing Order and
Delivery Guarantees

Distributed Transactions

All-or-nothing Atomicity; Isolation
Levels

Data Invariants

Data Invariant Enforcement

Data Replication

Data Caching and Replication
Consistency

Query Processing

Query Processing Consistency

11

Towards a benchmark for transactional cloud applications

Requirement Criteria DeathStar | TrainTicket ?
Functional Decomposition Isolation of Resources Yes Yes Yes
: Event Processing Order and No No MEE

Event Processing Delivery Guarantees
No No Yes
Distributed Transactions AII—or—nothmg Atomicity; No No Yes
Isolation Levels
Data Invariants Data Invariant Enforcement No No Yes
Data Replication Data Cacglng .and Replication No No Yes
onsistency

Query Processing Query Processing Consistency No No Yes

12

I Online Marketplace: A benchmark for data management in microservices

UNIVERSITY OF

Online Marketplace: A Benchmark for
Data Management in Microservices

Rodrigo Laigner, Zhexiang Zhang, Yijian Liu, Leonardo Gomes, and Yongluan Zhou
Data Systems Lab @ University of C

State of the Practice

E-‘) ;%Lr} . €0 H:MT Fault isolation
Home > ACM Journals > Proceedings of the ACM on Management of Data > Vol. 3, No. 1 > Online Marketplace: A Benchmark = “," }T:‘. ‘ ;T T s
for Data Management in Microservices = vl . nine
— Payment Ordor Event replaying
RESEARCH-ARTICLE | OPEN ACCESS X in & f Data Management Challenges and Motivation
(54 {é} Component Coordination Query Processit Data Invariants “\:‘, Event processing
Online Marketplace: A Benchmark for Data Management in T S SR e,

Challenges on ensurin

H = Challenges on ensuring o Challenges on ensuring
‘consistency across B consistent and fficient @ correct event processing
sty OB e warseom &) somies

Problem: Existing benchmarks do 123 Insufficient to capture the Cannot foment the design of
notincorporate real-world data adherence to and overhead of futuristic data systems for
management challenges! data i y .

lAuthors: Rodrigo Laigner, Zhexiang_Zhang, Yijian Liu Leonardo Freitas Gomes Yongluan

The Online Marketplace Benchmark

ZhOU AUtihors Info & Clalms Design Overview Case Studies and Experimental Evaluation

[fit actor, Faas, and mi i] State-of-the-art platforms

Proceedings of the ACM on Management of Data, Volume 3, Issue 1 « Article No.: 3, Pages 1 - 26 Qorieans e
httDS//dOIOfO/T O 1 1 45/3709653 Cart Stock Product Payment Seller Order Customer Shipment .:;. g};‘:\’é*s ‘ I I
% 8 e

Paralll Encapsulated Decoupled

Derived Insights

x scheme - sensitive to dy)

X All-or-nothing atomicity and concurrency control < dominant overheads

X Missing quorying capabilties - ad-hoc data processing t

X Weak delivery semantics < complex encoding of idempotent operations.
Parformanca and failure isolation * insuffciont APIs fo configuration

multiplexing * hig
+ 8 Virtualized programming abstractions - lransparent fiuro and recovery
+ 8 Holisic sato and quaue management - promising safety tachniaue

Published: 11 February 2025 Publication History

Meoting all data management requirements.
requires a composition of data systems

e i ey vy -

Gt | A Sy | Uil bt e Conclusion

Tt = et e ey 9 Stross the porformanca of SOTA platforms
e [ot chcds o A concroto case for databasa rosoarchers

St arling o g et e
| Atestoed for novel algorthms, systams, and

el e I e e o e
P Gy o e Bayond microsarvico architectures

A Loggng T r—— * Faas, actors, modular monolithic, etc.

I Online Marketplace design goals

Coverage

Fully incorporate data management challenges
Industry strength

Domain that widely adopts microservices

Low adoption barrier

Ease understanding by non-expert experts

Generalizability

Can be applied to multiple, different use-cases

14

I Online Marketplace application template

B

Cart Product Stock Order Seller

000
000 8
00

OOD

Payment Customer Shipment

= o0 B X

Independent Pipelined Encapsuled Decoupled 15

Online Marketplace workload

Transaction Type Microservices #Events
Customer Checkout Long and complex, lookups and Car.t, Stock, Order, Payment, 10
inserts Shipment, Seller, Customer
Product Delete Short and conflicting Cart, Product, Stock 3
Price Update Short, conflicting, and out of order Cart, Product 2
Update Delivery Complex query and bulk processing | Shipment, Order, Seller, Customer 12\V(23

AVG = Average number of sellers per order

Streaming Query

Event Streams

Operators

Seller Dashboard

InvoiceIssued, ShipmentEvent,
PaymentEvent

Join, Aggregate, Filter,
Projection, Union

Cart Abandonment

Reservelnventory, PaymentEvent,
StockReservationFailed

Union, Window Join

Low Stock Warning

Reservelnventory

Aggregate, Window Join

16

I Online Marketplace synthesis

Requirement

Criteria

Categories/Instances

Functional
Decomposition

Isolation of Resources

Compute and storage level

Event-driven

Processing Order &

At-most-once, at-least-once,

Processing Delivery Guarantees exactly-once delivery
Distributed All-or-nothing atomicity & Isolation Linearizable product updates;
Transactions Levels serializable Update Delivery
Data Invariants Invariant No duplicate checkouts;
Enforcement ; ho dangling records

Data Replication

Replication Consistency

Eventual; causality single- and
multiple object

Query Processing

Query Consistency

Consistent snapshot

Audit Logging

Log Format, Durability

Auditable event exchanges

17

I Online Marketplace artifacts

Benchmark Driver
Management of the life-cycle of an experiment
Data generation, ingestion, and workload submission
Statistics collection and performance metrics report
Workload correctness
» Dynamic-and-decentralized states
» Asynchronous systems

Highly-configurable and extensible APIs

18

I Online Marketplace artifacts

Platform implementations
Microsoft Orleans
Apache Flink Statefun
Microsoft Dapr
Spring
vMODB
Styx?

0 Orleans o % Stateful
‘. Functions

Postgre SQL

dc'l-lir

c

spring

19

I Online Marketplace cases studies & evaluation

Orleans

& Stateful
@dW Functions

Component Key Design Rational
Cart customer id Customer’s cart management
Customer customer id Customer data and stats processing
Product ;iiéii;ii’i A product’s state and operations
Stock ;iiéii;ii’i A stock item’s state and operations
Order customer id Unit of order processing for a customer
Payment customer id Unit of payment processing for a customer
Shipment h(customer id) Unit of shipment processing for a disjoint set of customers
Seller seller id Seller data and stats processing

20

I Online Marketplace cases studies & evaluation

Workload sensitiveness to program design
Performance and failure isolation

Weak delivery -> idempotent operations
Query processing features

Opaque data models; data invariants
Native synchronization primitives

Deployment and event processing model

21

I Online Marketplace cases studies & evaluation

Virtualized abstractions

Holistic management of state and queue operations
Performance techniques

Multiplexing non-conflicting transactions
Batch-oriented execution in skewed workloads

Composability -> careful co-design

22

I Online Marketplace cases studies & evaluation

6,000

Throughput (tx/s)
o
S
3

—@— Orleans

—M— Orleans+Logging
—@— Orleans TX //.—.

2,500
2,000
1,500
1,000

500

T

T

—e— Statefun
—m— Statefun+Logging

200

400

600

800

1,000

23

I Online Marketplace cases studies & evaluation

Proxy Layer /

oo

Compute Layer

S : w800
""“ Stock Seller : ?
"’" "’“ . actors : Nat
actors : = 600
Cart Shipment, :
actors _:, H actors —§D 400 — @ Orleans TX
...................... £ ' E —m— +View
_____ Order ‘ = 200 —@— +View&Eventual
f oy =] / actors —%— +View&Causal

10 20 30

| 0
/ / Data Layer \ \ Number of CPUs

LA R N 3

Cache Cluster Actor Storage Event Log ;
g Storage Query Engine :

I Online Marketplace cases studies & evaluation

Stress the performance of state-of-the-art platforms

Reveal performance and functionality issues

A concrete example for database researchers

A testbed for novel algorithms, systems, and
RESEARCH-ARTICLE | OPEN ACCESS

Rethinking State Management in Actor
Systems for Cloud-Native Applications

programming models

Trending cloud application architectures

Authors: Yijian Liu, Rodrigo Laigner, Yongluan Zhou

Claims

Beyond microservice architectures

SoCC '24: Proceedings of the 2024 ACM Symposium on Cloud Computit
Pages 898 - 914 e https://doi.org/10.1145/3698038.3698540

Faa$S, actors, modular monolithic, etc.
25

| Arewedone?

f

Cart

App
Logic

Payment

App
Logic

@

Partition A

Partition B

/
(
I-an

Partition C

26

Benchmarks

2. TUDelft

COPENHAGEN

