
Benchmarks



2

Why benchmarking?

Stress aspects of a system given a workload definition

Derive insights about [the (in)ability of] a system to
Manage locks (e.g., in a contention workload)

Partition and distribute data (e.g., with skewed record 
accesses)

(Over)Usage of computational resources

Stalls (coming from instruction misses)

Provide a clear comparison point for different systems 



3

Why benchmarking transactional cloud applications?

Cloud programming systems exhibit large discrepancies

Variety of programming models and guarantees

Challenges on deciding for an ideal model

Entities, objects, workflows, durable, stateful, stateless, 
reliable, virtual, actors, services, and so on...

Source: shutterstock



4

Why benchmarking transactional cloud applications?

Data partitioning, access, and storage

Concurrent application logic execution

Fault handling

Upgrade support

Debugging

Guarantees during crashes and network partitions

Source: shutterstock



DeathStar benchmark

A suite of microservice 
applications

Effects of microservices on 
hardware and software in 
the system stacks

Focus on hardware, network, 
and operating systems

5

State-of-the-art microservice benchmarks

Y. Gan et al. “,An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud and Edge Systems", ASPLOS 2019



TrainTicket benchmark

A complex and heterogenous 
microservice archietcture

Focus on software 
engineering concerns

Replicating industrial faults in 
microservices

Support investigation of fault 
analysis and debugging 

6

State-of-the-art microservice benchmarks

Xiang Zhou et al. “,Fault Analysis and Debugging of Microservice Systems: Industrial Survey, Benchmark System, and Empirical Study.” IEEE Transactions on Software Engineering. 2018



Netherite (VLDB 2022)
“hello world,” 5-task workflow
Transfer across bank accounts
MapReduce-style WordCount 
CollisionSearch

7

What benchmarks are being used?

Boki (SOSP 2021)
DeathStar benchmark
▸ Movie reviews
▸ Travel reservations

Retwis

Cloudburst (VLDB 2020)
Composition of functions
machine learning prediction
Retwis, a simple twitter 
clone

Snapper (SIGMOD 2022)
Smallbank Benchmark
TPC-C



8

What benchmarks are being used?

Styx (SIGMOD 2025)
TPC-C
YCSB
DeathStar (microservice 
benchmark)

SmSa (SoCC 2024)
TPC-C
YCSB
Online Marketplace 
(more to come)

Histrio (DEBS 2025)
banking application
hotel reservation application

Portals (2023)
Savina (actor benchmark)
NexMark (stream 
processing)



9

Are we faithfully benchmarking transactional cloud applications?

Benchmarking is conducted 
in an ad-hoc fashion
Disparate benchmarks used
Missing key aspects of data 
management in the cloud
Disparate design and system 
models
Challenging direct 
comparison across systems Source: DC



10

Refreshing real-world data management challenges

Netflix (Sarma, 2020): “Rethinking service interactions as streams of event 
exchanges—as opposed to a sequence of synchronous requests”
Wix (Silnitsky, 2022): “[..] developers noticed that the inventory service database 
does not reflect the actual inventory levels of some products. Was the 
OrderCreated or PaymentCompleted event produced correctly?”
Nubank (Ferreira and Wible, 2017): “you have late-arriving events [...] we need 
to time travel back, re-play the events and figuring out the balance that does not 
invalidate the invariants we have, that is fixing invariants”
B2W (Mayerhofer, 2018): “[...] in a microservice architecture there are multiple 
services, each one of them handling a single concern. [...] Often a microservice 
requires data from another microservice to serve its request.”
Crowdtap (Viennot et. al, 2015): “the same data, needed by different 
(micro)services, must be replicated across their respective DBs.”



11

Towards a benchmark for transactional cloud applications

Requirement Criteria DeathStar TrainTicket

Functional Decomposition Isolation of Resources Yes Yes

Event Processing Event Processing Order and 
Delivery Guarantees

No No

No No

Distributed Transactions All-or-nothing Atomicity; Isolation 
Levels No No

Data Invariants Data Invariant Enforcement No No

Data Replication Data Caching and Replication 
Consistency No No

Query Processing Query Processing Consistency No No



12

Towards a benchmark for transactional cloud applications

Requirement Criteria DeathStar TrainTicket ?

Functional Decomposition Isolation of Resources Yes Yes Yes

Event Processing Event Processing Order and 
Delivery Guarantees

No No Yes

No No Yes

Distributed Transactions All-or-nothing Atomicity; 
Isolation Levels No No Yes

Data Invariants Data Invariant Enforcement No No Yes

Data Replication Data Caching and Replication 
Consistency No No Yes

Query Processing Query Processing Consistency No No Yes



13

Online Marketplace: A benchmark for data management in microservices



14

Coverage

Fully incorporate data management challenges

Industry strength

Domain that widely adopts microservices

Low adoption barrier

Ease understanding by non-expert experts

Generalizability

Can be applied to multiple, different use-cases

Online Marketplace design goals



15

Online Marketplace application template

Cart StockProduct

Payment

SellerOrder

Customer Shipment

DecoupledEncapsuledIndependent Pipelined



16

Online Marketplace workload

Transaction Type Microservices #Events

Customer Checkout Long and complex, lookups and 
inserts

Cart, Stock, Order, Payment, 
Shipment, Seller, Customer 10

Product Delete Short and conflicting Cart, Product, Stock 3

Price Update Short, conflicting, and out of order Cart, Product 2

Update Delivery Complex query and bulk processing Shipment, Order, Seller, Customer 10 * 2 * 
AVG

AVG = Average number of sellers per order

Streaming Query Event Streams Operators

Seller Dashboard InvoiceIssued, ShipmentEvent, 
PaymentEvent

Join, Aggregate, Filter, 
Projection, Union

Cart Abandonment ReserveInventory, PaymentEvent, 
StockReservationFailed Union, Window Join

Low Stock Warning ReserveInventory Aggregate, Window Join 



17

Online Marketplace synthesis

Requirement Criteria Categories/Instances

Functional 
Decomposition

Isolation of Resources Compute and storage level

Event-driven 
Processing

Processing Order &
Delivery Guarantees

At-most-once, at-least-once, 
exactly-once delivery

Distributed 
Transactions

All-or-nothing atomicity & Isolation 
Levels

Linearizable product updates; 
serializable Update Delivery

Data Invariants Invariant 
Enforcement

No duplicate checkouts; no 
overselling; no dangling records

Data Replication Replication Consistency Eventual; causality single- and 
multiple object

Query Processing Query Consistency Consistent snapshot
Audit Logging Log Format, Durability Auditable event exchanges



18

Benchmark Driver 

Management of the life-cycle of an experiment

Data generation, ingestion, and workload submission

Statistics collection and performance metrics report

Workload correctness

▸ Dynamic-and-decentralized states 

▸ Asynchronous systems

Highly-configurable and extensible APIs

Online Marketplace artifacts



19

Platform implementations

Microsoft Orleans 

Apache Flink Statefun

Microsoft Dapr

Spring

vMODB

Styx?

Online Marketplace artifacts



20

Online Marketplace cases studies & evaluation

Component Key Design Rational

Cart customer_id Customer’s cart management

Customer customer_id Customer data and stats processing

Product
seller_id, 
product_id A product’s state and operations

Stock
seller_id, 
product_id A stock item’s state and operations

Order customer_id Unit of order processing for a customer

Payment customer_id Unit of payment processing for a customer

Shipment h(customer_id) Unit of shipment processing for a disjoint set of customers

Seller seller_id Seller data and stats processing



21

Workload sensitiveness to program design

Performance and failure isolation

Weak delivery -> idempotent operations

Query processing features

Opaque data models; data invariants

Native synchronization primitives

Deployment and event processing model

Online Marketplace cases studies & evaluation



22

Virtualized abstractions

Holistic management of state and queue operations

Performance techniques

Multiplexing non-conflicting transactions

Batch-oriented execution in skewed workloads

Composability -> careful co-design

Online Marketplace cases studies & evaluation



23

Online Marketplace cases studies & evaluation



24

Online Marketplace cases studies & evaluation



25

Stress the performance of state-of-the-art platforms

Reveal performance and functionality issues

A concrete example for database researchers

A testbed for novel algorithms, systems, and 

programming models

Trending cloud application architectures

Beyond microservice architectures

FaaS, actors, modular monolithic, etc.

Online Marketplace cases studies & evaluation



26

Are we done?

Cart
App 

Logic

Stock Payment
App 

Logic

DB

App 
Logic

DBDB

Partition A
Partition B
Partition C



Benchmarks


