Runtimes & Execution Engines

LF S

2,‘ ! o 4

£ g =

5 ER S
e |

G NS
LIS B
G

@ %
2o TUDelft

I Three families of systems

Classic Microservices
Spring, Flask, Dapr, etc.

Database + Serverless Functions
Boki, Beldi, Cloudburst, DBOS

Dataflow-based
Styx
Statefun

Actor-like
Orleans

Microservices

| Spring Framework

:o, Spring Framework Runtime

Java-based web application
fram ewo rk Data Access/Integration Web

JDBC ORM

WebSocket

Standardized interfaces to

OXM JMS

facilitate operational concerns aneactos Portit
Security
Network Core Container
Modularity o Context
Testing

Source: Spring Framework Docs (2025)

Industry-strength framework
for cloud applications

| Spring through a “data management” perspective

:o Spring Framework Runtime

ORM-heavy specifications

Data Access/Integration Web

Developers specify local
transactions via annotations

JDBC ORM WebSocket

OXM JMS

Limited support for distributed Transactions

et El £ S B
Aspects Instrumentation Messaging
Not popularly pursued

Core Container

Portlet

Wide library support for event-
driven communication

Safety and liveness at

developers' hands Source: Spring Framework Docs (2025)

Core Context

| Dapr

Distributed framework for Cart l ,
event-driven applications
Standardized APIs that

abstract away technologies
Side-car pattern

Configurable message
delivery

Workflow management
Payment

&

| Abird's eye view into Dapr

— o o o o o —,

Java
N L
, HTTP/gRPC S e e T e
: e N\ N\ N\ N\ N\
! 3—0 & >0 8 (g,
|
: Workflow SIT.lubbsll:sr?b/e In?/z::va::iin Mansata:rient Actors
: . J) U) J U -) y
: e N\ N\ N\ N\ \
' = & o (5 A

L)

: CoE:iteur:?clion Secrets Bindings Cryptography DIStILIZ:ted
: _onnd J U J J U)

-_—-—— — — — = ==

o o o o o S S S O T S e e

| Dapr through a “data management” perspective

Dapr API @
HTTP/gRPC
Centralized state

management

No relational model
No strong
transactional
guarantees

Weak delivery
semantics State Management

Performance
overhead

| Orleans: Invoking a method on actor A

Methods

Source: Philip A. Bernstein, Sergey Bykov:

Developing Cloud Services Using the
Orleans Virtual Actor Model. IEEE Internet
Comput. 20(5): 71-75 (2016)

3. await RA.megod()

v Orleans Runtime

Find A

If exist(A) { Task = await R,A.method }
else {choose aserver S and

invoke A.new at S }

11

I Overview of Orleans Runtime

Messaging multiplexed over a few TCP connections
Actors run on a small number of threads, one per core
Actor Directory is a custom DHT

Cluster Membership management relies on a reliable distributed
database

Scheduler

Persistence Actor

. Actor
Manager Activatio

>
(7]

Source: Philip A. Bernstein, Sergey Bykov: ccccasasa Directory
Developing Cloud Services Using the Activations E E E E E E E

Orleans Virtual Actor Model. IEEE Internet Manager | —======<2
Comput. 20(5): 71-75 (2016) g = Membership

Client ‘ -
Messaging/Serialization

| Actor State Management

The runtime instantiates an actor and reads the
actor’'s state from storage

public CartActor([PersistentState(
stateName: "cart",
storageName: Constants.OrleansStorage)] IPersistentState<Cart> state)

{ D D
’ on |00

this.cart = state; [S |

o0

: 0%%% Compute cluster O%C,’g%

Storage

LT

I Transactions in the Actor Model

Many applications require atomic operations, possibly over multiple
actors, e.g.,
A checkout workflow involving Cart, Stock, Payment and
Shipment actors

Transaction management on actor abstraction is challenging.
Multi-actor transactions are distributed transactions, even if
actors are collocated on a single server

14

I Orleans Transaction

2PL to achieve concurrent control
Commit using 2PC

Early lock release:
Releasing locks during phase one of 2PC
Reducing excessive latency caused by locking of data on cloud
storage

Deadlock can be avoided by sorting the access order of actors
Use timeout if sorting is not possible

Source: Tamer Eldeeb, Sebastian Burckhardf, Reuben Bond, Asaf Cidon, Junfeng Yang, Philip A. Bernstein:
Cloud Actor-Oriented Database Transactions in Orleans. Proc. VLDB Endow. 17(12): 3720-3730 (2024)

15

| Snapper: A transaction library on actor systems

Transactions can be executed in two modes
Deterministic: PACT (Pre-declared ACtor Transaction)
Non-deterministic: ACT (ACtor Transaction)

PACT: Trans are ordered and executed deterministically in each
involved actor

App code declares the set of actors involved in a transaction
ACT: 2PL + 2PC + no wait

Novel hybrid execution mechanism:
Snapper allows both PACT and ACT to run simultaneously

A global serializability check to ensure correctness

Source: Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, Marcos Antonio Vaz Salles:
Hybrid Deterministic and Nondeterministic Execution of Transactions in Actor Systems. SIGMOD Conference 2022: 65-78

16

| Snapper: A transaction library on actor systems

Smallbank Benchmark

Contention 1

Orleans Txn |

ACT |
PACT 1

txnsize = 4, CC + Logging

7000

6000

o
=
S
=

Throughput [txn/sec]

1000

5000

B PACT
ACT

I O:lcansTxn
[—_—]OrleansTxn (no deadlock)
- © — ACT abort rate

—~ # — OrleansTxn abort rate

W

S

[l

(=}
T

20001

160%

140%

& »
_-BEEI--B* - H

uniform

Source: Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, Marcos Antonio Vaz Salles:
Hybrid Deterministic and Nondeterministic Execution of Transactions in Actor Systems. SIGMOD Conference 2022: 65-78

low medium high very high

Workload skewness

100%

180%

Abort rate

120%

0%

| Snapper: A transaction library on actor systems

Hybrid execution:

NT throughput [txn/sec]

40K

(8
=)
~

10K}

Throughput [txn/sec]
S
~

24K 42K 74K 137K
®— Uniform: 100% PACT
A - Uniform: 90% PACT
Uniform: 0% PACT 4.;
&
J -
&
4 8 16 32
Number of CPUs

NT throughput [txn/sec]

22K 41K 70K 128K

40K

(V8]
S
~

Throughput [txn/sec]
S
A~

——&—Skewed: 100% PACT
- A -Skewed: 90% PACT
. @--Skewed: 0% PACT

4 3 16 32
Number of CPUs

Source: Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, Marcos Antonio Vaz Salles:

Hybrid Deterministic and Nondeterministic Execution of Transactions in Actor Systems. SIGMOD Conference 2022: 65-78

Serverless Functions

I Function as a Service — Typical System

Apache OpenWhisk (2020)

FaaS model:
function

iInvocation
and isolation

Functions
executed via
spawning new
Docker container

21

I Serverless Function as a Service

Transparent application management

Users rely that application functions are:
persistent (no submission of the function for every request)
scheduled (in a timely and fair manner)
instantiated (provision of resources and execution)
scaled (according to application workload)

persisted (results are stored durably)

22

I Serverless Function as a Service - History

Lambda paradigm (e.g., AWS Lambda)

AWS Cloud
Small to moderate 1/0 (storage m
and network) workloads AWS Lambs
Lack of execution guarantees m | :
—— s

intra and inter functions el o~ n

‘Gateway . DynamoDB
Costly shared and mutable state

Moellering & Grunwald in AWS Architecture Blog (2020)

I Serverless Function as a Service - History

Stateful FaaS (SFaa$s) (15t gen)
Specific-purpose
autoscaling storage
Richer data consistency
semantics
Weak guarantees on

multi-function workflows

Sreekanti et al. “Cloudburst: Stateful Functions-as-a-Service.” VLDB (2020)

Cloudburst Runtime

Cache Cache

Function Scheduler Function Scheduler Function Scheduler

Executor

Cache

jJuswiabeuey

<
5]
3
2,
o
=
3
Q
R0
P
@
1]
o
=
&

Autoscaling Key-Value Store (Anna)

24

I Serverless Function as a Service - History

SFaaSs (2" generation)

Q
‘o

P Stateful
‘ Fuigtigns KALIX

Actor-oriented
programming model

Stronger execution

guarantees < >

25

I Serverless Function as a Service — Typical System

System (Coordination) [Storage] [Trigger} [Queue} {API Gateway} {Data Cache] [DevOsz
System (Orchestration) » Resource Monitor
Metrics v
Load Balancer <+—— Controller Resource
|
Y Y Y Y
A Instance Pool B Instance Pool C Instance Pool D Instance Pool
Encapsule T
. oo ontainer Instance st VM Instance
Container — Oni : VM Pne 0 Orli
Sidecar Sidecar
prewarm prewarm
pool Application pool Application
One-for-all One-for-all
[})
Vi lization
iuaiizato Bins/Libs Bins/Libs
/ Bins/Libs \ / Bins/Libs \ Guest Guest
[Container Engine | Hypervisor
Host OS Kernel A 4 (Host OS Kernel)
Server Server

Z. Li et al. The Serverless Computing Survey: A Technical Primer for Design Architecture. ACM Comput. Surv. (2022)

I Serverless Function as a Service

Function execution is multiplexed in a virtual layer

Virtualized sandboxes o] One-to-one| M Instance
prewarm : Sidecar
1. Function is registered 5651 ABpliE iBH
One-for-all 2
2. Functionisinvoked 7T TTTTTTTTTTTTTTT T
Bins/Libs
. . Guest Guest
3. Upstream layers process invocation T ——
. . . (Host OS Kernel)
4. \/irtualized sandbox is loaded/reused —

5. Sandbox executes function in isolation

Z. Li et al. The Serverless Computing Survey: A Technical Primer for Design Architecture. ACM Comput. Surv. (2022)

27

Performance techniques

?
Reuse a warm sandbox _ How long to keep*
Avoid cold start -

Pre-create a sandbox

predicting load increase

Distribute and batch functions o

according to previous runs

I Serverless Function as a Service
28

Z. Li et al. The Serverless Computing Survey: A Technical Primer for Design Architecture. ACM Comput. Surv. (2022)

I Serverless Function as a Service

Faa$S is a model for executing functions

FaaS system abstracts operational concerns to enable FaaS model
Resource and failure transparency to developer

Focus on writing application functions
Complex, data-intensive applications may not fit well the paradigm (yet)

Application architecture is always a trade-off

29

Dataflow systems

STIIEAMIHG...

STIIH\MIHG SYSTEMSHEIIYWIIERI'

imgflip.com

32

https://github.com/delftdata/styx

| Styx: adataflow-based transactional runtime for Cloud Applications

Obiject-oriented API “Keep the data moving” [1] Scalability
Dataflows are awkward. No time for wait for 2PCs. Styx Partitioned state, collocated
@ Styx offers Durable Entities [4], extends deterministic database with function execution.
.0 i.e., Python objects with concepts [2] for arbitrary Parallel execution at Entity-
¥ arbitrary function-to-function function-to-function calls. level granularity.
O calls.
k=)
7 Coarse-grained Fault Exactly-once output Consistency
Q Tolerance
Uses durable queues (Kafka) for Serializable state mutations
Async checkpoints & |4 input transactions, and made by arbitrary function-to-
Chandy-Lamport [3,4]. deduplicating outputs. function calls.

[
[2
[3
4
[5
[6

Stonebraker, Cetintemel, Zdonik. "The 8 requirements of real-time stream processing." [Sig. Record 2005]

Yi, Yu, Cao, and Samuel Madden. "Aria: a fast and practical deterministic OLTP database." [VLDB 2020]

Carbone, et.al. "State management in Apache Flink®: consistent stateful distributed stream processing." [VLDB 2018]

Silvestre, Fragkoulis, Katsifodimos. "Clonos: Consistent causal recovery for highly-available streaming dataflows." [SIGMOD 21]

Psarakis, Zorgdrager, Fragkoulis, Salvanesci, Katsifodimos “Stateful Entities: Object-oriented Cloud Applications as Distributed Dataflows”, [CIDR ‘23, EDBT '24] 33
Psarakis, Christodoulou, Siachamis, Fragkoulis, Katsifodimos “Styx: Transactional Stateful Functions on Streaming Dataflows”, [SIGMOD'25]

]
]
]
]
]
]

https://github.com/delftdata/styx

Enter Styx: an “ideal” Transactional Cloud Application Runtime

Stateful Entities API (WiP)

Python Object-oriented API. App code resembles
single-machine code (with some conventions).

Operator API

Dataflow Execution Engine

State Transactional Fault Auto-scaling
Storage Protocol Tolerance (WiP)
Cloud Provider
Resource Manager Message Broker Blob Storage
(Kubernetes, ...) (Kafka) (AWS S3)

Python—-based, access to lower-level
operator primitives for advanced programmers.

Transactional serializability, exactly-once output,
early commit-replies, low-latency processing

https://github.com/delftdata/styx =~ 34

https://github.com/delftdata/styx

| Stateful Entities (WiP): Object-oriented Style Programming

@entity
class User:
def __init_ (self, username: str):
self.username: str = username
self.balance: int =1
def __key_ (self):
return self.username

@transactional

def buy_item(self, amount: int, item: Item) -> bool:

total_price: int = amount % item.price()
if self.balance < total_price:
return False

Decrease the stock.
available: bool = item.update_stock(-amount)

if not available:
item.update_stock(amount)
return False

self.balance -=

return True

total_price

— buy_item1(...){...}

\

buy_item(...X{...}

price(..

User

Item

item.price()

»

item.update Stock(

————=stocklanount)
<

buy_item3(..)
buy_item4(..)

item.y

pdate_stock(amount)

buy_items(_ [~

\V
—» buy_item2(...

Mv\
ey

—» buy_item3(...){...}

update_stock(...){...}

@entity

class Item:

def

def

def

def

—» buy_item4(...){...

AN

_init__

(self, item_name: str, price: int):
self.item_id: str = item_id
self.stock: int = @

self.price: int = price

__key__(self):
return self.item_id

price(self) —> int:
return self.item_id

update_stock(self, amount: int) -> bool:
self.stock += amount
return stock>=0

—» buy_item5(...){...}

Psarakis, Zorgdrager, Fragkoulis, Salvanesci, Katsifodimos “Stateful Entities: Object-oriented Cloud Applications as Distributed Dataflows”, CIDR ‘23, EDBT '24]

Deployment on Styx

A Control Event (txn commit/prepare, snapshot marker, etc.)

Input/Output Kafka

buy_item(...){...}

buy_item1(...){...}
buy_item2(...{...}
buy_item3(...){...}
buy_item4(...){...}
buy_item5(...){...}

"Event Router

. Function Inboxes

A Payload Message

8 Operator State

price(... ...}

. Function Inboxes

Python Dataflow
Class Operator
=>

Object State

Operator State

=>
Function Call Arguments => | Event
Return Value Event

=>

Item

update_stock(...){...}

"Event Router

Stateful Dataflow Graph
- Parallelizable
- Exactly-once processing guarantees
- Transactional serializability
- High-throughput, low-latency

Event-driven programming in Styx (Operator API)

Qcart.register
def checkout(ctx: StatefulFunction):
items, user_id, total_price, paid = ctx.get()
for item_id, qty in items:
ctx.call_async(operator=stock,
function_name='decrement_stock',
key=item_id,
params=(qty,))
ctx.call_async(operator=payment,
function_name='pay',
key=user_id,
params=(total_price,))
paid = True
ctx.put((items, user_id, total_price, paid))
return "Checkout Successful"

37

I How does the architecture look like?

make reservation(Hotel hl, Flight f1l, User ul)

Input Queue 11
v
Worker; o Worker,
>
Sequencer | [Sequencer]
Function
l Executor
Function Executor
e =
make reservation(hy, fi, u;)
i A
oA oo
reserve__hotel(h;) ' reserve_flight(f;) ||| Workery,
| | [ogesneer]
Read h; lWrite hy lca” async Evnortor
§={h1, vy hn} | Partitioner [> g =
¥

Output Queue ()

1S joysdeug

<

<

9300910

<

|

38

| Styxis epoch-based

39

I How does it perform?

DeathStar Throughput vs. Latency

—e— Styx 50p —— Beldi 50p —+— Boki 50p
—-e— Styx 99p -=- Beldi 99p -4- Boki 99p

102 103 107
Input Throughput {(transactions/s)

100 workers/CPUs

1044

Latency (ms)

YCSB Throughput vs. Latency

—e— Styx 50p —+— Beldi 50p —+— T-Statefun 50p —— Boki 50p
-e— Styx 99p —-=— Beldi 99p —-¢—- T-Statefun 99p -%— Boki 99p

102 103 10*
Input Throughput (transactions/s)

40

I How does it perform?

TPC-C Throughput vs. Latency

(W = Num. of Warehouses)

—e— W=150p —— W=1050p —+— W=10050p
-e- W=199p -&=— W=10 99p -4- W=100 99p

0 500 1000 1500 2000 2500 3000 3500
Input Throughput (transactions/s)

100 workers/CPUs

200K+

Throughput (TPS)
= =
(€] () u
o & o
~ A~ R

YCSB Scalability

(% of multipartition transactions)

—e— 0%

—— 20% —— 50%

—— 100%

4

6

8

10

12

14

16
Workers

24

32

41

I Summary

Existing FaaS avoid important problems
State, messaging & transactions need a holistic solution

It is possible to build “ideal” runtimes

42

