
Runtimes & Execution Engines

Classic Microservices
Spring, Flask, Dapr, etc.

Database + Serverless Functions
Boki, Beldi, Cloudburst, DBOS

Dataflow-based
Styx
Statefun

Actor-like
Orleans

2

Three families of systems

Microservices

Orchestrations, service mesh, databases, etc.

Java-based web application
framework
Standardized interfaces to
facilitate operational concerns

Security
Database API
Network
Modularity
Testing

Industry-strength framework
for cloud applications

4

Spring Framework

Source: Spring Framework Docs (2025)

ORM-heavy specifications
Developers specify local
transactions via annotations
Limited support for distributed
transactions

Not popularly pursued
Wide library support for event-
driven communication
Safety and liveness at
developers' hands

5

Spring through a “data management” perspective

Source: Spring Framework Docs (2025)

Distributed framework for
event-driven applications
Standardized APIs that
abstract away technologies
Side-car pattern
Configurable message
delivery
Workflow management

6

Dapr

StockCart

Payment

7

A bird’s eye view into Dapr

App

HTTP/gRPC

Performance
overhead
Centralized state
management
No relational model
No strong
transactional
guarantees
Weak delivery
semantics

8

Dapr through a “data management” perspective

StockCart

Payment

Dapr API

HTTP/gRPC

State Management

Actors

Akka, Orleans, etc.

11

Orleans: Invoking a method on actor A

Source: Philip A. Bernstein, Sergey Bykov:
Developing Cloud Services Using the
Orleans Virtual Actor Model. IEEE Internet
Comput. 20(5): 71-75 (2016)

Messaging multiplexed over a few TCP connections
Actors run on a small number of threads, one per core
Actor Directory is a custom DHT
Cluster Membership management relies on a reliable distributed
database

12

Overview of Orleans Runtime

Source: Philip A. Bernstein, Sergey Bykov:
Developing Cloud Services Using the
Orleans Virtual Actor Model. IEEE Internet
Comput. 20(5): 71-75 (2016)

The runtime instantiates an actor and reads the
actor’s state from storage
The actor saves its state to storage whenever
it wants

Declare a persistence provider for the class
(Azure Table, Azure SQL DB, Redis…)
Invoke “WriteState” to save the state to
the persistent store

13

Actor State Management

Many applications require atomic operations, possibly over multiple
actors, e.g.,

A checkout workflow involving Cart, Stock, Payment and
Shipment actors

Transaction management on actor abstraction is challenging.
Multi-actor transactions are distributed transactions, even if
actors are collocated on a single server

14

Transactions in the Actor Model

15

Orleans Transaction

2PL to achieve concurrent control
Commit using 2PC
Early lock release:

Releasing locks during phase one of 2PC
Reducing excessive latency caused by locking of data on cloud
storage

Deadlock can be avoided by sorting the access order of actors
Use timeout if sorting is not possible

Source: Tamer Eldeeb, Sebastian Burckhardt, Reuben Bond, Asaf Cidon, Junfeng Yang, Philip A. Bernstein:
Cloud Actor-Oriented Database Transactions in Orleans. Proc. VLDB Endow. 17(12): 3720-3730 (2024)

16

Snapper: A transaction library on actor systems

Transactions can be executed in two modes
Deterministic: PACT (Pre-declared ACtor Transaction)
Non-deterministic: ACT (ACtor Transaction)

PACT: Trans are ordered and executed deterministically in each
involved actor

App code declares the set of actors involved in a transaction
ACT: 2PL + 2PC + no wait
Novel hybrid execution mechanism:

Snapper allows both PACT and ACT to run simultaneously
A global serializability check to ensure correctness

Source: Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, Marcos Antonio Vaz Salles:
Hybrid Deterministic and Nondeterministic Execution of Transactions in Actor Systems. SIGMOD Conference 2022: 65-78

17

Snapper: A transaction library on actor systems

Smallbank Benchmark
Contention ↑

Orleans Txn ↓
ACT ↓
PACT ↑

Source: Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, Marcos Antonio Vaz Salles:
Hybrid Deterministic and Nondeterministic Execution of Transactions in Actor Systems. SIGMOD Conference 2022: 65-78

18

Snapper: A transaction library on actor systems

Hybrid execution:

Source: Yijian Liu, Li Su, Vivek Shah, Yongluan Zhou, Marcos Antonio Vaz Salles:
Hybrid Deterministic and Nondeterministic Execution of Transactions in Actor Systems. SIGMOD Conference 2022: 65-78

Serverless Functions

Lambda/Azure Functions, Durable Functions, Amazon Steps

21

Function as a Service – Typical System

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Functions
executed via

spawning new
Docker container

FaaS model:
function

invocation
and isolation

Apache OpenWhisk (2020)

22

Serverless Function as a Service

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Transparent application management

Users rely that application functions are:

persistent (no submission of the function for every request)

scheduled (in a timely and fair manner)

instantiated (provision of resources and execution)

scaled (according to application workload)

persisted (results are stored durably)

23

Serverless Function as a Service - History

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Lambda paradigm (e.g., AWS Lambda)

Small to moderate I/O (storage

and network) workloads

Lack of execution guarantees

intra and inter functions

Costly shared and mutable state

Moellering & Grunwald in AWS Architecture Blog (2020)

24

Serverless Function as a Service - History

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Stateful FaaS (SFaaS) (1st gen)

Specific-purpose

autoscaling storage

Richer data consistency

semantics

Weak guarantees on

multi-function workflows

Sreekanti et al. “Cloudburst: Stateful Functions-as-a-Service.” VLDB (2020)

25

Serverless Function as a Service - History

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

SFaaS (2nd generation)

Actor-oriented

programming model

Stronger execution

guarantees

26

Serverless Function as a Service – Typical System

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Z. Li et al. The Serverless Computing Survey: A Technical Primer for Design Architecture. ACM Comput. Surv. (2022)

27

Serverless Function as a Service

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Function execution is multiplexed in a virtual layer

Virtualized sandboxes

1. Function is registered

2. Function is invoked

3. Upstream layers process invocation

4. Virtualized sandbox is loaded/reused

5. Sandbox executes function in isolation

Z. Li et al. The Serverless Computing Survey: A Technical Primer for Design Architecture. ACM Comput. Surv. (2022)

28

Serverless Function as a Service

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Performance techniques

Reuse a warm sandbox

Pre-create a sandbox

predicting load increase

Distribute and batch functions

according to previous runs

Overprovision
Avoid cold start

Balance load Increase latency

How long to keep?

Z. Li et al. The Serverless Computing Survey: A Technical Primer for Design Architecture. ACM Comput. Surv. (2022)

29

Serverless Function as a Service

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

FaaS is a model for executing functions

FaaS system abstracts operational concerns to enable FaaS model

Resource and failure transparency to developer

Focus on writing application functions

Complex, data-intensive applications may not fit well the paradigm (yet)

Application architecture is always a trade-off

Dataflow systems

Styx

32

Styx: a dataflow-based transactional runtime for Cloud Applications

Scalability

Partitioned state, collocated
with function execution.

Parallel execution at Entity-
level granularity.

Exactly-once output

Uses durable queues (Kafka) for
input transactions, and
deduplicating outputs.

“Keep the data moving” [1]

No time for wait for 2PCs. Styx
extends deterministic database

concepts [2] for arbitrary
function-to-function calls.

Object-oriented API

Dataflows are awkward.
Styx offers Durable Entities [4],

i.e., Python objects with
arbitrary function-to-function

calls.

Coarse-grained Fault
Tolerance

Async checkpoints á lá
Chandy-Lamport [3,4].

33

[1] Stonebraker, Çetintemel, Zdonik. "The 8 requirements of real-time stream processing." [Sig. Record 2005]
[2] Yi, Yu, Cao, and Samuel Madden. "Aria: a fast and practical deterministic OLTP database." [VLDB 2020]
[3] Carbone, et.al. "State management in Apache Flink®: consistent stateful distributed stream processing." [VLDB 2018]
[4] Silvestre, Fragkoulis, Katsifodimos. "Clonos: Consistent causal recovery for highly-available streaming dataflows." [SIGMOD 21]
[5] Psarakis, Zorgdrager, Fragkoulis, Salvanesci, Katsifodimos “Stateful Entities: Object-oriented Cloud Applications as Distributed Dataflows”, [CIDR ‘23, EDBT ’24]
[6] Psarakis, Christodoulou, Siachamis, Fragkoulis, Katsifodimos “Styx: Transactional Stateful Functions on Streaming Dataflows”, [SIGMOD’25]

https://github.com/delftdata/styx

Consistency

Serializable state mutations
made by arbitrary function-to-

function calls.

D
es

ig
n

C
ho

ic
es

https://github.com/delftdata/styx

34

Enter Styx: an “ideal” Transactional Cloud Application Runtime

Google Cloud

Operator API

Python Object-oriented API. App code resembles
single-machine code (with some conventions).

Dataflow Execution Engine

Stateful Entities API (WiP)

Python–based, access to lower-level
operator primitives for advanced programmers.

Transactional
Protocol

Transactional serializability, exactly-once output,
early commit-replies, low-latency processingState

Storage
Fault

Tolerance

Cloud Provider

Blob Storage
(AWS S3)

Message Broker
(Kafka)

Resource Manager
(Kubernetes, …)

Auto-scaling
(WiP)

https://github.com/delftdata/styx

https://github.com/delftdata/styx

35

Stateful Entities (WiP): Object-oriented Style Programming

buy_item1(…){…} buy_item2(…){…} buy_item3(…){…} buy_item4(…){…} buy_item5(…){…}buy_item(…){…}

price(…){…} update_stock(…){…}

Local fu
ncti

on st
ate

Return val

Psarakis, Zorgdrager, Fragkoulis, Salvanesci, Katsifodimos “Stateful Entities: Object-oriented Cloud Applications as Distributed Dataflows”, CIDR ‘23, EDBT ’24]

User

Managed Operator State

Fu
nc

tio
n

In
b

ox
es

Ev
en

t
Ro

ut
er

Item

User

…

…

Input/Output Kafka

…

Control Event (txn commit/prepare, snapshot marker, etc.) Payload Message Operator State

buy_item1(…){…}

buy_item2(…){…}

buy_item3(…){…}

buy_item4(…){…}

buy_item5(…){…}

buy_item(…){…}

Item

Managed Operator State

Fu
nc

tio
n

In
b

ox
es

Ev
en

t
Ro

ut
er

price(…){…}

update_stock(…){…}

Stateful Dataflow Graph
 - Parallelizable
 - Exactly-once processing guarantees
 - Transactional serializability
 - High-throughput, low-latency

Deployment on Styx Python Dataflow

Class
=>

Operator

Object State
=>

Operator State

Function Call Arguments => Event

Return Value
=>

Event

37

Event-driven programming in Styx (Operator API)

38

How does the architecture look like?

39

Styx is epoch-based

40

How does it perform?

DeathStar Throughput vs. Latency YCSB Throughput vs. Latency

100 workers/CPUs

41

How does it perform?

TPC-C Throughput vs. Latency

(W = Num. of Warehouses)

YCSB Scalability

 (% of multipartition transactions)

100 workers/CPUs

Existing FaaS avoid important problems

State, messaging & transactions need a holistic solution

It is possible to build “ideal” runtimes

42

Summary

Scaling

Programming Model

Orchestration

State management

Transactions

Messaging

Failure handling

