
Programming Models

Microservices

Service Architectures Background

Database TierClients

SQL, Stored
Procedures

Application Tier

Application
Programs

Figures partially extracted from Shah & Salles (2018)

ü Durability
ü Recoverability
ü Data processing
ü Data integrity

Service Architectures Background

Database TierClients

SQL, Stored
Procedures

Application Tier

Application
Programs

JDBC,
ODBC

Figures partially extracted from Shah & Salles (2018)

ü Object-oriented programming
ü Database technology abstraction
ü Explicit connection management
ü Exploit cloud-scale architectures

ü Change tracking
ü Code evolution
ü Software maintenance
ü Debuggers

Service Architectures Primer: Microservice

5

Cart StockProduct

Payment

SellerOrder

Customer Shipment

Loose couplingPrivate StatePartitionedIndependent

Cart
App

Logic

Stock

Payment

DB

REST Call

REST Call

App
Logic

DB

App
Logic

DB

“Textbook” Microservice

Service Architectures Primer: Microservice

Multi-thread application
servers
App-level business logic
Object-relational
mapping
Service communication
DBMS-based
concurrency control

Cart
App

Logic

Stock

Payment

DB

REST Call

REST Call

App
Logic

DB

App
Logic

DB

“Textbook” Microservice

Service Architectures Primer: Microservice

Holistic resource
provisioning
Scalability
High data availability
Fault isolation
Team independence

Schema changes
Data models
Workloads
Deployment

Cart
App

Logic

Stock

Payment

DB

REST Call

REST Call

App
Logic

DB

App
Logic

DB

“Textbook” Microservice

Service Architectures Primer: Microservice

Synchronous,
stateless

REST
HTTP, gRPC

Asynchronous,
persistent

Message brokers
Event log
systems

Checkout code example w/ Spring

Cart
App

Logic

Stock

Payment

DB

REST Call

REST Call

App
Logic

DB

App
Logic

DB

“Textbook” Microservice

Checkout code example w/ Spring

Cart
App

Logic

Stock

Payment

DB

REST Call

REST Call

App
Logic

DB

App
Logic

DB

“Textbook” Microservice

Cart
App

Logic

Stock

Payment

DB

REST Call

REST Call

App
Logic

DB

App
Logic

DB

“Textbook” Microservice

What can go wrong?

12

What people say about their deployments

Coordination mechanism %

Orchestration 22.84
Choreography 20.37

Sagas (centralized approach, with a Saga coordinator) 14.81

The Back-end for Front-end Pattern (BFF) 13.58
Sagas (decentralized approach, i.e., no Saga coordinator) 8.64

Distributed transactions (e.g., via 2PC) 8.64

Others 9.88

What is going on?

Laigner et al. “Data Management in Microservices: State of the Practice, Challenges, and Research Directions” VLDB (2021)

13

What people say about their deployments

Distributed commit protocols
Interoperability
Complex user code
Blocking interfaces
Broken encapsulation

What is being used then?

14

What people say about their deployments

“I am absolutely against the business logic inside
the database. Depending on the scale I would
refrain from using transactions at all, favouring an
event-driven approach, with eventual consistency
and micro-transactions.”

Laigner et al. “Data Management in Microservices: State of the Practice, Challenges, and Research Directions” VLDB (2021)

What does that mean?

Event-driven Microservices

Cart
App

Logic

Stock Payment
App

Logic

DB

App
Logic

DB

Kafka

DB

Event-Driven
Data

Management

Communicate Data
Item Updates

Trigger Remote
Computations

Event-driven Microservices

Cart
App

Logic

Stock Payment
App

Logic

DB

App
Logic

DB

Kafka

DB

Application Logic
Kafka Plumbing

Programmatic Configuration

Event-driven Microservices

Cart
App

Logic

Stock Payment
App

Logic

DB

App
Logic

DB

Kafka

DB

Interfaces for common database operations (e.g., CRUD)
Kafka publisher abstraction

What can go wrong?
Actual application logic

Actors

Akka, Orleans, etc.

Actors
Isolated components
Communicate via asynchronous
message passing

Upon receipt of a message, an actor
can:

Create other actors
Send messages
Change its behavior
▸ Functional-style: Replace its

function
▸ OO-style: Update its

encapsulated state, thus
affecting its behavior

The Actor Model

19

Source: Rajesh K. Karmani, Gul Agha:
Actors. Encyclopedia of Parallel Computing

2011: 1-11

The Actor Model

20

Source: Rajesh K. Karmani, Gul Agha:
Actors. Encyclopedia of Parallel Computing

2011: 1-11

Key semantic properties
Encapsulation of state
Atomic execution of methods
Location transparency
Fairness in scheduling

Asynchronous communication
• Unknown message delivery

delay
• But messages will get delivered

eventually

Sergey Bykov

Coordination in the actor model

21

Source: Rajesh K. Karmani, Gul Agha:
Actors. Encyclopedia of Parallel Computing

2011: 1-11

Reason about concurrency in terms of
The interleaving of messages to
actors
Rather than interleaving access to
shared variables

Key complexity
• Many possible interleavings of

messages to groups of actors

Problems with Actor Model Frameworks

22

Too low level
App manages lifecycle of actors, exposed to distributed races
App has to deal with actor failures, supervision trees
App manages placement of actors – resource management

Developer has to be a distributed systems expert

Source: Philip A. Bernstein, Sergey Bykov:
Developing Cloud Services Using the Orleans
Virtual Actor Model. IEEE Internet Comput.
20(5): 71-75 (2016)

Actor instances always exist, virtually
Location transparency (logical actor reference)
Activations are created on demand (managed
by the runtime)
The actor saves its state to storage whenever
it wants
ACID transactions over multiple actors

Orleans: Virtual Actors

Source: Philip A. Bernstein, Sergey Bykov:
Developing Cloud Services Using the Orleans
Virtual Actor Model. IEEE Internet Comput.
20(5): 71-75 (2016)

Checkout code example w/ Orleans

Cart Stock

Checkout code example w/ Orleans

Cart

Payment

Caveats of the Actor Model

Cart Stock Payment Customer

Actor vs Object
E.g., should stock be an object or an actor?

Should Cart and Customer be one or two actors?
One task -> one actor
Different actors capture different simultaneous tasks.

Granularity of Actors
Coordination overhead vs. concurrency Source: Yiwen Wang, et al:

Modeling and Building IoT Data Platforms with
Actor-Oriented Databases. EDBT 2019.

Serverless Functions

28

Function as a Service

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

A model of application function execution

Basic model: function isolation and invocation

Logical: function identifier and URL, language runtime
Physical: instance settings (memory, CPU)

Event-driven/trigger-based execution
External events (i.e., clicks, streams)

Application = collection of functions
Chained f-to-f invocation {fA, fB, fC}

Z. Li et al. “The Serverless Computing Survey: A Technical Primer for Design Architecture.” ACM Comput. Surv. (2022)

29

Function as a Service

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Z. Li et al. “The Serverless Computing Survey: A Technical Primer for Design Architecture.” ACM Comput. Surv. (2022)

30

Function as a Service – Invocation Patterns

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Z. Li et al. “The Serverless Computing Survey: A Technical Primer for Design Architecture.” ACM Comput. Surv. (2022)

31

Function as a Service – Workflow Scenarios

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Amazon AWS (2025)

32

Function as a Service – Typical System

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Functions
executed via

spawning new
Docker container

FaaS model:
function

invocation
and isolation

Apache OpenWhisk (2020)

33

Apache OpenWhisk

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Apache OpenWhisk (2020)

Stateless functions

No state functionality

exposed to functions/users

CouchDB is used internally for

metadata

https://openwhisk.apache.org/

34

AWS Step Functions

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

https://aws.amazon.com/step-functions/Amazon AWS (2025)

35

AWS Step Functions

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

https://aws.amazon.com/step-functions/Amazon AWS (2025)

36

Cloudburst – A stateful serverless platform

Kyriakos Psarakis

Asterios Katsifodimos

Marios Fragkoulis

George Siachamis

Low composition overhead

Direct communication

Low-latency state access

Anna as a KV store

Sreekanti et al. “Cloudburst: Stateful Functions-as-a-Service.” VLDB (2020) https://github.com/hydro-project/cloudburst

Developers follow opinioned software designs
Frameworks like Spring capture this essence
Implicit software design patterns, annotation-based config

Complex highly modularized applications
Missing object-oriented constructs
Object-oriented relational mapping

Adoption among enterprise application architectures
Latency-sensitive components often through runtimes (e.g., JVM)
100%-based FaaS applications are not the de facto approach (yet)

Impedance mismatch with data-centric apps?

Dataflow

39

Scalable, event-driven μServices are parallel streaming dataflows

This is a partitioned, stateful, streaming dataflow graph. Built by hand.

Cart

Cart
App

Logic

Stock Payment

P1

App
Logic

P0

App
Logic

P0

Kafka

App
Logic

P0

Stock
App

Logic

P1

Payment
App

Logic

P1

Dataflow Programming Primer (1)

Input, operator, output

func
input output

Dataflow Programming Primer (2)

Example: read numbers and double them

In Scala

map
4 2 3 8 4 6

input stream output stream

inputStream.map(number => number*2)

User-defined Function

Dataflow Programming Primer (1)

-
X

output

A =X - Y
B = Y *10
C = A + B

Serially in von Neumann

*

+

Y

10

Y3 time units needed

2 time units needed

Complex Dataflows by Combining Functions

filter map

output stream

filter

input stream

In dataflow programming we model a program as a directed graph of
the data flowing through operators

filter

output stream

Stateless functions
Filters, simple maps, etc.

Stateful functions
Counters, sums, joins, etc.

Stateless vs. Stateful Functions

func

state

func

count

Stateful vs. Stateless operators in Dataflows

filter map

output stream

filter

input stream

filter

output stream

count

Stateful
computation

Parallelization of Dataflow Programs

filter map

output stream

filter

input stream

filter

output stream

Pipeline-Parallelism

Parallelization of Dataflow Programs

filter map

output stream

filter

input stream

filter

output stream

Pipeline-Parallelism

` CPU1 CPU2

CPU3

CPU4

4 CPUs max

Parallelization of Dataflow Programs

filter map

output stream

filter

input stream

filter

output stream

filter map

output stream

filter

filter

output stream

partiti
on

Data- & pipeline-Parallellism 9 CPUs max

Complex Dataflows by Combining Functions

Decoupled software components
People “abuse” dataflow systems to implement microservices
No reliance on global program counter or global memory.
Cloud applications (often) need to be rewritten
Transactions over dataflows are not straight-forward

Dataflows as substrate for Cloud Services

"Cloud apps are very awkward to program at the moment”

API abstractions leak system-oriented handling to the app logic

Developers should be able to not transform their imperative code

Summary

