Transactional Cloud Applications:
Status Quo, Challenges, and
Opportunities

UNIVERSITY OF
COPENHAGEN e

I Who are we?

Rodrigo George Kyriakos Asterios Yongluan
Laigner Christodoulou Psarakis Katsifodimos Zhou
(University of (TU Delft) (TU Delft) (TU Delft) (University of
Copenhagen) Copenhagen)

Slides, and pointers: COPENHAGEN TUDelft
https://delftdata.github.io/tutorial-sigmod25/

https://delftdata.github.io/tutorial-sigmod25/
https://delftdata.github.io/tutorial-sigmod25/
https://delftdata.github.io/tutorial-sigmod25/

| Disclaimer: not your typical tutorial

This is not your typical tutorial
The list of presented systems is not exhaustive
This is not a survey (although it's a good start)

Presenters may be opinionated (at times)

Tutorial Scope

I Cloud services (canonical example)

Serviceé
(stateless) layer:

Databaseé
(stateful) layer:

Check & update stock, verify payment, then checkout the shopping cart.

I Use Cases for Transactional Cloud Applications

Target Use-cases: Low-latency Cloud applications requiring
transactional consistency, containing complex business logic.

Booking/reservation, systems, trading
Ad serving & bookkeeping
Fraud detection & payments

Inventory management

Target Industries

Banking, e-commerce, trading platforms, retail, etc.

I ACID in the world of services

Atomicity

All three services execute, despite system/user errors
Consistency

FK constraints: shopping cart contains only products that exist in

stock
Isolation

No stock updates visible without having payment cleared

No payment without stock updates reflected in stock service
Durability

Data is safe, possibly replicated

How people develop

microservices howadays

I Service Architectures Primer: Monolith

Monolith

YES,

BUT

Programmers only deal
with app logic

Database ensures ACID

Cannot migrate easily to
the Cloud

May not scale on
commodity hardware

| Service Architectures Primer: pService

"Textbook” Microservice

Cart

App
Logic

—

REST Call
A
v

SH
\\c;//

()

Payment

App
Logic

YES,

BUT

App
Logic

—

—

Scales better
Code modularity

Independent
deployment/scaling

Requires orchestration
Retries/idempotence hard
Consistency/Transactions

in app code (SAGAs, 2
Phase Commit/Open XA)

I Service Architectures Primer: event-driven uService

Partitioned, event-driven architecture YES, BUT
High Performance Inherits pService issues
Fault-tolerant Few people can program

and keep it running

Replayable & Debuggable |Ad-hoc transactions +
event-driven = trouble

| Different ‘'shades’ of consistency guarantees

Cloud applications largely avoid transactions through databases
Exceptions apply, e.g., DBOS

Transactions are implemented in user code.
Ad-hoc (with tons of hacks)
Two-phase commit
SAGAs

12

Transactions

I Two-Phase Commit in Services

Coordination for committing or rolling back a transaction
Two phases: Prepare phase and Commit phase
Serializable guarantees

Reduced throughput

Single point of failure

14

| Two-Phase Commit example

Cart Cart

Logic Logic

G
[

Commit
[Coordinator]

= %, |
N 2 __

[Coordinator]

> Stock 55 ()
@ \(\o toc C Stock
Commit? Logic Logic
—_— e
4—
CY es/no

NN ~
S
0 (\ N\
Payment Payment
App App
Logic Logic

— —

I SAGAs in Services

Talk about the sagas, compensations, etc.
The result is eventually consistent, under many assumptions.
The world implements SAGAs without knowing it.

16

I SAGAs in Services [1]

Distributed transaction as multiple single local transactions
Compensatory transactions in case of failure

Durable and distributed logs of all messages (usually Kafka topic)
Eventual consistency

[1] H. Garcia-Molina, K. Salem, “Sagas”, [SIGMOD '87]

17

I SAGAs in Services [1]

Cart

App
Logic

—

create cart

Discard cart

Payment

App
Logic

—

Validate
payment

Rollback

Cancel
payment

Stock

App
Logic

—

Update
stock

Rollback
stock

[1] H. Garcia-Molina, K. Salem, “Sagas”, [SIGMOD '87]

18

|l Yes, but

BUT

_yes_but

19

| Ad-hoc Transactions: allover in Microservices

Ad Hoc Transactions:
What They Are and Why We Should Care

Chuzhe Tang'?, Zhaoguo Wang'?, Xiaodong Zhang'?, Qianmian Yu'?
Binyu Zang'?, Haibing Guan?, Haibo Chen*?
!Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University
’Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China
*Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

zhaoguowang@sijtu.edu.cn

Developer’s Responsibility or Database’s Responsibility?
Rethinking Concurrency Control in Databases

Chaoyi Cheng*' Mingzhe Han* Nuo Xu¥
The Ohio State University The Ohio State University The Ohio State University
Spyros Blanas Michael D. Bond Yang Wang
The Ohio State University The Ohio State University The Ohio State University

20

FINDING 1. Every studied application uses ad hoc transac-
tions. Among the 91 ad hoc transactions in total, 71 cases are
considered critical to the web applications.

FINDING 3. There are 7 different lock implementations and
2 validation implementations among the 8 applications we stud-
ied. Except for Broadleaf, developers consistently use the same
lock/validation implementation in individual applications.

Ad Hoc Transactions: What They Are and Why We Should Care, Tang et.al., SIGMOD Record 2023.

21

C4. Due to the complex interplay between microservices’ behav-
iors, asynchronous events are generated to trigger computations.
However, avoiding anomalies related to the unintended interleav-
ing of events across microservices is a challenging task.

Cé6. Developers lack viable and efficient abstractions for transac-
tional queuing in microservice architectures. As a result, anom-
alies arise due to lack of isolation and ad-hoc fault-handling,
leading to challenges on ensuring application correctness.

22

C8. Due to the distributed nature of microservice architectures,
eventual consistency is often taken as the de facto consistency
model by practitioners. This choice introduces a series of chal-
lenges on reasoning about distributed states and invariants.

23

Challenges with

microservices & the like

>90% of programmers’ time spent in machine/network failures
(a.k.a. “plumbing”)

*Actual code (shrinked) of scalable shopping cart, using
Flask and Postgres. Excludes K8s config file hell.

“Useful” application-logic code percentage: 5-10%.

25

I Requirements for transactional Cloud apps

Monolith Microservices Faa$S (Lambda + Steps + DB)

o -
i'= Transaction support A Sad Developer T Happy Developer

Ideal Cloud Runtime

26

I The rest of this tutorial

Right after
Programming Models

After the break
Runtimes
Benchmarks
Open Problems

28

